【題目】如圖,在矩形ABCD中,MBC的中點(diǎn),將△AMB沿直線AM翻折成△AB1M,連接B1D,NB1D的中點(diǎn),則在翻折過程中,下列說法正確的是(

A.存在某個(gè)位置,使得CNAB1

B.CN的長(zhǎng)是定值

C.AB=BM,則AMB1D

D.AB=BM=1,當(dāng)三棱錐B1AMD的體積最大時(shí),三棱錐B1AMD的外接球的表面積是4π

【答案】BD

【解析】

中,取中點(diǎn),連接,由題意判斷三線,共面共點(diǎn),得出不成立;

中,利用余弦定理可得是定值,判斷正確;

中,取中點(diǎn),連接,,由題意判斷不成立;

中,當(dāng)三棱錐的體積最大時(shí),求出該三棱錐外接球的表面積即可.

解:對(duì)于:如圖1,取中點(diǎn),連接,

,

如果,可得到,

,且三線,共面共點(diǎn),不可能,則錯(cuò)誤.

對(duì)于:如圖1,可得由(定值),

(定值),(定值),

由余弦定理可得

所以是定值,則正確.

對(duì)于:如圖2,取中點(diǎn),連接,

由題意得,即可得,

從而,由題意不成立,可得錯(cuò)誤.

對(duì)于:當(dāng)平面平面時(shí),三棱錐的體積最大,

由題意得中點(diǎn)就是三棱錐的外接球的球心,

球半徑為1,表面積是,則正確.

故選:BD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線.

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;

2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn),且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:

①點(diǎn)的極角;

面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)α,β是空間中的兩個(gè)平面,l,m是兩條直線,則使得αβ成立的一個(gè)充分條件是(

A.lα,mβ,lmB.lm,lα,mβ

C.lα,mαlβmβD.lm,lα,mβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是函數(shù)的極值點(diǎn),求a的值;

2)當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別是雙曲線的左、右焦點(diǎn),且相交于點(diǎn)().

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與橢圓交于A,B兩點(diǎn),以線段AB為直徑的圓是否恒過定點(diǎn)?若恒過定點(diǎn),求出該定點(diǎn);若不恒過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長(zhǎng)為2,平面過正方體的一個(gè)頂點(diǎn),且與正方體每條棱所在直線所成的角相等,則該正方體在平面內(nèi)的正投影面積是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2021年某省將實(shí)行的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案