【題目】如圖,在矩形ABCD中,M為BC的中點(diǎn),將△AMB沿直線AM翻折成△AB1M,連接B1D,N為B1D的中點(diǎn),則在翻折過程中,下列說法正確的是( )
A.存在某個(gè)位置,使得CN⊥AB1
B.CN的長(zhǎng)是定值
C.若AB=BM,則AM⊥B1D
D.若AB=BM=1,當(dāng)三棱錐B1-AMD的體積最大時(shí),三棱錐B1-AMD的外接球的表面積是4π
【答案】BD
【解析】
中,取中點(diǎn),連接交與,由題意判斷三線,,共面共點(diǎn),得出不成立;
中,利用余弦定理可得是定值,判斷正確;
中,取中點(diǎn),連接,,由題意判斷不成立;
中,當(dāng)三棱錐的體積最大時(shí),求出該三棱錐外接球的表面積即可.
解:對(duì)于:如圖1,取中點(diǎn),連接交與,
則,,
如果,可得到,
又,且三線,,共面共點(diǎn),不可能,則錯(cuò)誤.
對(duì)于:如圖1,可得由(定值),
(定值),(定值),
由余弦定理可得,
所以是定值,則正確.
對(duì)于:如圖2,取中點(diǎn),連接,,
由題意得面,即可得,
從而,由題意不成立,可得錯(cuò)誤.
對(duì)于:當(dāng)平面平面時(shí),三棱錐的體積最大,
由題意得中點(diǎn)就是三棱錐的外接球的球心,
球半徑為1,表面積是,則正確.
故選:BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;
(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:
①點(diǎn)的極角;
②面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α,β是空間中的兩個(gè)平面,l,m是兩條直線,則使得α∥β成立的一個(gè)充分條件是( )
A.lα,mβ,l∥mB.l⊥m,l∥α,m⊥β
C.lα,mα,l∥β,m∥βD.l∥m,l⊥α,m⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右頂點(diǎn)分別是雙曲線:的左、右焦點(diǎn),且與相交于點(diǎn)().
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線:與橢圓交于A,B兩點(diǎn),以線段AB為直徑的圓是否恒過定點(diǎn)?若恒過定點(diǎn),求出該定點(diǎn);若不恒過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長(zhǎng)為2,平面過正方體的一個(gè)頂點(diǎn),且與正方體每條棱所在直線所成的角相等,則該正方體在平面內(nèi)的正投影面積是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年某省將實(shí)行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com