3.已知映射f:A→B,其中A={x|x>0},B=R,對應(yīng)法則f:x→-x2+2x,對于實數(shù)k∈B,在集合A中存在兩個不同的原像,則k的取值范圍為( 。
A.k>0B.k<1C.0<k≤1D.0<k<1

分析 根據(jù)映射的意義知,對應(yīng)法則f:x→y=-x2+2x,對于實數(shù)k∈B在集合A中存在兩個不同的原像,這說明對于一個y的值,有兩個x和它對應(yīng),根據(jù)二次函數(shù)的性質(zhì),得到結(jié)果.

解答 解:y=-x2+2x=-(x2-2x+1)+1,
∵對于實數(shù)k∈B在集合A中存在兩個不同的原像,
∴0<k<1,
故選D.

點評 本題考查映射的意義,考查二次函數(shù)的值域,是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是兩個不共線的向量,且$\overrightarrow a=\overrightarrow{e_1}+m\overrightarrow{e_2}$與$\overrightarrow b=-3\overrightarrow{e_1}-\overrightarrow{e_2}$共線,則m=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則下列正確的是( 。
A.p∨q為真B.p∧q為真C.p∨q為假D.q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知等比數(shù)列{an}中,a1+a2=3,a3+a4=12,則a5+a6=( 。
A.3B.15C.48D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若過點p(1,$\sqrt{3}$)作圓O:x2+y2=1的兩條切線,切點分別為A、B兩點,則|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l1,l2方程分別為2x-y=0,x-2y+3=0,且l1,l2的交點為P.
(1)求過點P且與直線x+3y-5=0垂直的直線方程;
(2)若直線l過點P,且坐標原點到直線l的距離為1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.數(shù)列{an}滿足a1=2,a2=1,并且$\frac{1}{{{a_{n-1}}}}=\frac{2}{a_n}-\frac{1}{{{a_{n+1}}}}(n≥2)$.則a10+a11=( 。
A.$\frac{19}{2}$B.$\frac{21}{2}$C.$\frac{21}{55}$D.$\frac{23}{66}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{sin2x-cos2x+1}{2sinx}$.
(1)求f(x)的定義域;
(2)求f(x)的取值范圍;
(3)設(shè)α為銳角,且$tan\frac{α}{2}=\frac{1}{2}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線C1:$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$( t 為參數(shù)),曲線C2:$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(r>0,θ為參數(shù)).
(1)當r=1時,求C 1 與C2的交點坐標;
(2)點P 為曲線 C2上一動點,當r=$\sqrt{2}$時,求點P 到直線C1距離最大時點P 的坐標.

查看答案和解析>>

同步練習(xí)冊答案