12.已知函數(shù)$f(x)=\frac{sin2x-cos2x+1}{2sinx}$.
(1)求f(x)的定義域;
(2)求f(x)的取值范圍;
(3)設(shè)α為銳角,且$tan\frac{α}{2}=\frac{1}{2}$,求f(α)的值.

分析 (1)根據(jù)分式的分母不能為0,即sinx≠0,可得函數(shù)f(x)的定義域.
(2)將函數(shù)化簡,利用三角函數(shù)的有界限求解f(x)的取值范圍;
(3)利用同角三角函數(shù)關(guān)系式和二倍角公式,求解f(α)的值.

解答 解:函數(shù)$f(x)=\frac{sin2x-cos2x+1}{2sinx}$.
(1)由sinx≠0得函數(shù)f(x)的定義域?yàn)閧x|x≠kπ,k∈Z}
(2)函數(shù)化簡得$f(x)=\frac{{2sinxcosx-(1-2{{sin}^2}x)+1}}{2sinx}=\frac{{2sinxcosx+2{{sin}^2}x}}{2sinx}=cosx+sinx=\sqrt{2}sin(x+$$\frac{π}{4})(x≠kπ,k∈Z)$.
又由于x=kπ,k∈Z時(shí),$\sqrt{2}sin(x+\frac{π}{4})$的值為±1,
所以f(x)的取值范圍為:$[-\sqrt{2},-1)∪(-1,1)∪(1,\sqrt{2}]$
(3)令$t=tan\frac{α}{2}=\frac{1}{2}$,得$tanα=\frac{2t}{{1-{t^2}}}=\frac{4}{3}$,
由α為銳角,得$sinα=\frac{4}{5},cosα=\frac{3}{5}$,
∴$f(α)=sinα+cosα=\frac{4}{5}+\frac{3}{5}=\frac{7}{5}$.

點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知定義在R上的函數(shù)f(x)=log${\;}_{\frac{1}{2}}$$\frac{a}{{x}^{2}+1}$的值域?yàn)閇-1,+∞),則實(shí)數(shù)a的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知映射f:A→B,其中A={x|x>0},B=R,對應(yīng)法則f:x→-x2+2x,對于實(shí)數(shù)k∈B,在集合A中存在兩個(gè)不同的原像,則k的取值范圍為( 。
A.k>0B.k<1C.0<k≤1D.0<k<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,角A、B、C所對的邊分別為a、b、c,已知$b=2,A=\frac{π}{3}$,且$\frac{c}{1-cosC}=\frac{cosA}$,則△ABC的面積為(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$或$\sqrt{3}$D.$\sqrt{3}$或$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在等差數(shù)列{an}中,2a7-a8=6且$a_2^2-{a_3}=1$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a1,a2,a4成等比數(shù)列,求數(shù)列{an•2${\;}^{{a}_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=|lnx-$\frac{1}{2}$|,若a≠b,f(a)=f(b),則ab等于( 。
A.1B.e-1C.eD.e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,x≥0}\\{{a}^{x}-1,x<0}\end{array}\right.$,(x>0且a≠1)的圖象經(jīng)過點(diǎn)(-2,3).
(Ⅰ)求a的值,并在給出的直角坐標(biāo)系中畫出y=f(x)的圖象;
(Ⅱ)若f(x)在區(qū)間(m,m+1)上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.為美化環(huán)境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個(gè)花壇中,則選中的花中沒有紅色的概率為(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{5}{6}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列關(guān)系正確的是( 。
A.0=∅B.1∈{1}C.∅={0}D.0⊆{0,1}

查看答案和解析>>

同步練習(xí)冊答案