4.求下列函數(shù)的零點(diǎn):
(1)y=-x2+3x+4;
(2)y=x2+4x+4.

分析 根據(jù)函數(shù)零點(diǎn)的定義解f(x)=0,即可得到結(jié)論.

解答 解:(1)由y=-x2+3x+4=0,可得(x-4)(x+1)=0,所以函數(shù)的零點(diǎn)為4,-1;
(2)y=x2+4x+4,可得(x+2)2=0,所以函數(shù)的零點(diǎn)為-2.

點(diǎn)評 本題主要考查函數(shù)零點(diǎn)的計(jì)算,根據(jù)函數(shù)零點(diǎn)的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.甲、乙兩所學(xué)校高三年級分別有600人,500人,為了解兩所學(xué)校全體高三年級學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計(jì)表如表:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34714
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)17x42
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y4
(Ⅰ)計(jì)算x,y的值;
(Ⅱ)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績有差異;
甲校乙校總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
(Ⅲ)若規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$.其中n=a+b+c+d.
臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=$\sqrt{x}$,則$\lim_{△x→0}\frac{f(x+△x)-f(x)}{△x}$=(  )
A.$\frac{1}{{2\sqrt{x}}}$B.-$\frac{1}{{2\sqrt{x}}}$C.-$\frac{{\sqrt{x}}}{2}$D.$\frac{{\sqrt{x}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=4x,點(diǎn)(an,bn)在函數(shù)y=f(x)的圖象上,Sn是數(shù)列{bn}的前n項(xiàng)之積,且Sn=2n(n+1)
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式.
(2)設(shè)cn=$\frac{1}{{{a_{n+1}}•{{log}_4}{b_n}}}$,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)f($\frac{α}{2}$)=$\frac{3}{5}$,α∈($\frac{π}{6}$,$\frac{2π}{3}$),求sin(2α+$\frac{2π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某同學(xué)從家里騎車一路勻速行駛到學(xué)校,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間,下列函數(shù)的圖象最能符合上述情況的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=$\frac{\sqrt{1-x}}{2{x}^{2}-3x-2}$,g(x)=x2+x-1(x∈R).
(1)求f(0),g[f(0)]的值;
(2)求f(x)的定義域,g(x)的值域;
(3)若g(x)=5,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={y|y=x2-2x+3},B={x|y=$\sqrt{4-{x}^{2}}$},則A∩B=(  )
A.[-2,0]B.{2}C.[0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個(gè)正方體兩個(gè)平面分別截去一部分后,剩余幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.27B.18C.9D.6

查看答案和解析>>

同步練習(xí)冊答案