19.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)f($\frac{α}{2}$)=$\frac{3}{5}$,α∈($\frac{π}{6}$,$\frac{2π}{3}$),求sin(2α+$\frac{2π}{3}$)的值.

分析 (1)利用函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值可得函數(shù)的解析式.
(2)利用同角三角函數(shù)的基本關(guān)系求得cos($α+\frac{π}{3}$) 的值,再利用二倍角的正弦公式求得sin(2α+$\frac{2π}{3}$)的值.

解答 解:(1)由圖可得A=1,且T=4($\frac{7π}{12}$-$\frac{π}{3}$),從而ω=2.
再根據(jù)五點(diǎn)法作圖可得2•$\frac{π}{3}$+φ=π,求得φ=$\frac{π}{3}$,∴f(x)=sin(2x+$\frac{π}{3}$).
(2)由(1)可知f($\frac{α}{2}$)=sin($α+\frac{π}{3}$)=$\frac{3}{5}$,α∈($\frac{π}{6}$,$\frac{2π}{3}$),∴α+$\frac{π}{3}$∈($\frac{π}{2}$,π),cos($α+\frac{π}{3}$)=-$\sqrt{{1-sin}^{2}(α+\frac{π}{3})}$=-$\frac{4}{5}$,
∴sin(2α+$\frac{2π}{3}$)=sin2(α+$\frac{π}{3}$)=2sin($α+\frac{π}{3}$) cos($α+\frac{π}{3}$)=2•$\frac{3}{5}$•(-$\frac{4}{5}$)=-$\frac{24}{25}$.

點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值.還考查了同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知某幾何體的三視圖如圖所示,則此幾何體的體積是$\frac{2}{3}$;  表面積是$3+\sqrt{2}+\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.2015年12月,京津冀等地?cái)?shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴(yán)重的污染過程.為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份星期一到星期日某一時(shí)間段車流量與PM2.5的數(shù)據(jù)如表:
時(shí)間星期一星期二星期三星期四星期五星期六星期日
車流量x(萬輛)1234567
PM2.5的濃度y(微克/立方米)27313541495662
(1)在表中,畫出車流量和PM2.5濃度的散點(diǎn)圖;
(2)求y關(guān)于x的線性回歸方程;
(3)(i)利用所求的回歸方程,預(yù)測該市車流量為8萬輛時(shí),PM2.5的濃度;
(ii)規(guī)定當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)活為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)(結(jié)果以萬輛為單位,保留整數(shù))?
參考公式:回歸直線的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{x}$=$\overline{y}$=$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.$C_{18}^n$=$C_{18}^2$,則n=2或16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在長為10cm的線段AB上任取一點(diǎn)M,并以線段AM為邊作正方形,則這個(gè)正方形的面積介于36cm2到81cm2的概率為$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列函數(shù)的零點(diǎn):
(1)y=-x2+3x+4;
(2)y=x2+4x+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知sinα=$\frac{1}{2}$,α∈(0,$\frac{π}{2}$).
(1)求tanα的值;
(2)求cos(α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(1+x+x22=1+2x+3x2+2x3+x4
(1+x+x23=1+3x+6x2+7x3+6x4+3x5+x6
(1+x+x24=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8
  …
觀察上述等式,由以上等式推測:對于n∈N﹡,若(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,則 a2n-2=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)P1(-2,3),P2(0,1),圓C是以P1P2的中點(diǎn)為圓心,$\frac{1}{2}$|P1P2|為半徑的圓.
(Ⅰ)若圓C的切線在x軸和y軸上截距相等,求切線方程;
(Ⅱ)若P(x,y)是圓C外一點(diǎn),從P向圓C引切線PM,M為切點(diǎn),O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使|PM|最小的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案