設(shè)O是△ABC的內(nèi)切圓的圓心,||=5,||=4,||=3,則下列結(jié)論正確的是( )
A.
B.
C.==
D.=
【答案】分析:由AB=5、BC=4、CA=3,我們易得△ABC是以C為直角的直角三角形,則根據(jù)數(shù)量積的意義,我們易得本題實(shí)際上是實(shí)數(shù)作差比大小,移項(xiàng)后結(jié)合分配律和向量數(shù)量積的運(yùn)算性質(zhì),即可得到結(jié)論.
解答:解:方法一(分析法)
作出圖形,如圖,
-=,
由直角三角形C中為直角,
<0,

同理-=<0,

,
方法二(坐標(biāo)法)
以C為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,
∵O為△ABC的內(nèi)切圓圓心,且AB=5、BC=4、CA=3,
∴C(0,0),O(1,1),A(3,0),B(0,4),
=(2,-1),=(-1,3),=(-1,-1)
所以=-5,=-2,=-1,
所以
故選A.
點(diǎn)評(píng):向量的數(shù)量積為實(shí)數(shù)可轉(zhuǎn)化為實(shí)數(shù)大小的問題,作差借助減法的運(yùn)算又化歸數(shù)量積判斷,借助幾何條件判斷數(shù)量積符號(hào),充分顯示了數(shù)量積的本質(zhì)屬性,為向量和實(shí)數(shù)的相互轉(zhuǎn)化提供了方法和依據(jù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,側(cè)面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求證SA⊥SC;
(Ⅱ)在平面幾何中,推導(dǎo)三角形內(nèi)切圓的半徑公式r=
2S
l
(其中l(wèi)是三角形的周長(zhǎng),S是三角形的面積),常用如下方法(如右圖):
①以內(nèi)切圓的圓心O為頂點(diǎn),將三角形ABC分割成三個(gè)小三角形:△OAB,△OAC,△OB精英家教網(wǎng)C.
②設(shè)△ABC三邊長(zhǎng)分別為a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,則r=
2S
l

類比上述方法,請(qǐng)給出四面體內(nèi)切球半徑的計(jì)算公式(不要求說明類比過程),并利用該公式求出三棱錐S-ABC內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)自圓O外一點(diǎn)P引切線與圓切于點(diǎn)A,M為PA中點(diǎn),過M引割線交圓于B,C兩點(diǎn).求證:∠MCP=∠MPB.
(2)在平面直角坐標(biāo)系xOy中,已知四邊形ABCD的四個(gè)頂點(diǎn)A(0,1),B(2,1),C(2,3),D(0,2),經(jīng)矩陣M=
10
k1
表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結(jié)論.
(3)已知A是曲線ρ=12sinθ上的動(dòng)點(diǎn),B是曲線ρ=12cos(θ-
π
6
)
上的動(dòng)點(diǎn),試求AB的最大值.
(4)設(shè)p是△ABC內(nèi)的一點(diǎn),x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明
x
+
y
+
z
1
2R
a2+b2+c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇同步題 題型:解答題

(附加題)
(1)自圓O外一點(diǎn)P引切線與圓切于點(diǎn)A,M為PA中點(diǎn),過M引割線交圓于B,C兩點(diǎn).
求證:∠MCP=∠MPB.
(2)在平面直角坐標(biāo)系xOy中,已知四邊形ABCD的四個(gè)頂點(diǎn)A(0,1),B(2,1),C(2,3),D(0,2),經(jīng)矩陣表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結(jié)論.
(3)已知A是曲線ρ=12sinθ上的動(dòng)點(diǎn),B是曲線上的動(dòng)點(diǎn),試求AB的最大值.
(4)設(shè)p是△ABC內(nèi)的一點(diǎn),x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)自圓O外一點(diǎn)P引切線與圓切于點(diǎn)A,M為PA中點(diǎn),過M引割線交圓于B,C兩點(diǎn).求證:∠MCP=∠MPB.
(2)在平面直角坐標(biāo)系xOy中,已知四邊形ABCD的四個(gè)頂點(diǎn)A(0,1),B(2,1),C(2,3),D(0,2),經(jīng)矩陣M=
10
k1
表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結(jié)論.
(3)已知A是曲線ρ=12sinθ上的動(dòng)點(diǎn),B是曲線ρ=12cos(θ-
π
6
)
上的動(dòng)點(diǎn),試求AB的最大值.
(4)設(shè)p是△ABC內(nèi)的一點(diǎn),x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明
x
+
y
+
z
1
2R
a2+b2+c2
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市六合高級(jí)中學(xué)高三(上)數(shù)學(xué)寒假作業(yè)(5)(解析版) 題型:解答題

(1)自圓O外一點(diǎn)P引切線與圓切于點(diǎn)A,M為PA中點(diǎn),過M引割線交圓于B,C兩點(diǎn).求證:∠MCP=∠MPB.
(2)在平面直角坐標(biāo)系xOy中,已知四邊形ABCD的四個(gè)頂點(diǎn)A(0,1),B(2,1),C(2,3),D(0,2),經(jīng)矩陣表示的變換作用后,四邊形ABCD變?yōu)樗倪呅蜛1B1C1D1,問:四邊形ABCD與四邊形A1B1C1D1的面積是否相等?試證明你的結(jié)論.
(3)已知A是曲線ρ=12sinθ上的動(dòng)點(diǎn),B是曲線上的動(dòng)點(diǎn),試求AB的最大值.
(4)設(shè)p是△ABC內(nèi)的一點(diǎn),x,y,z是p到三邊a,b,c的距離,R是△ABC外接圓的半徑,證明

查看答案和解析>>

同步練習(xí)冊(cè)答案