已知f(x)=
x+π,(x>0)
0,      (x≤0)
,則f[f(-1)]=( 。
A、π-1B、0C、1D、π
考點:函數(shù)的值
專題:函數(shù)的性質及應用
分析:利用分段函數(shù)的性質求解.
解答: 解:∵函數(shù)f(x)=
x+π,(x>0)
0,(x≤0)
,
∴f(-1)=0,
f[f(-1)]=f(0)=0.
故選:B.
點評:本題考查函數(shù)值的求法,解題時要認真審題,注意分段函數(shù)的性質的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且a3=3,S4=10.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=
1
anan+1
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,acosB=bcosA,則三角形ABC是( 。
A、鈍角三角形
B、直角三角形
C、等腰三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

反比例函數(shù)y=
k
x
與一次函數(shù)y=x-
3
2
在(-1,1)有交點,則k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各組中兩個函數(shù)是同一函數(shù)的是( 。
A、f(x)=
x2-1
x-1
與g(x)=x+1
B、f(r)=πr2(r≥0)與g(x)=πx2(x≥0)
C、f(x)=logaax(a>0,且a≠1)與g(x)=alogax(a>0,且a≠1)
D、f(x)=|x|與g(t)=(
t
)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明命題:“已知a、b為實數(shù),若a>0,b<0,則方程x2+ax+b=0?至少有一個實根”時,要做的假設是( 。
A、方程x2+ax+b=0沒有實根
B、方程x2+ax+b=0至多有一個實根
C、方程x2+ax+b=0至多有兩個實根
D、方程x2+ax+b=0恰好有兩個實根

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(1,2),B(-3,8).
(1)求直線AB的方程;
(2)若點P滿足
PA
PB
=0,求P點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|-1≤x≤2},B={x|x2-(2m+1)x+2m<0}.
(Ⅰ)當m<
1
2
時,化簡集合B;
(Ⅱ)若“x∈B”是“x∈A”的充分條件(A∪B=A),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知長方體ABCD-A′B′C′D的邊長為AB=12,AD=8,AA′=5.以這個長方體的頂點A為坐標原點,射線AB,AD,AA′分別為x軸、y軸、z軸的正半軸,建立空間直角坐標系,
(1)求長方體頂點C′的坐標.
(2)計算A、C′兩點間的距離.

查看答案和解析>>

同步練習冊答案