【題目】定義區(qū)間[x1 , x2]的長(zhǎng)度為x2﹣x1(x2>x1)單調(diào)遞增),函數(shù) (a∈R,a≠0)的定義域與值域都是[m,n](n>m),則區(qū)間[m,n]取最大長(zhǎng)度時(shí)實(shí)數(shù)a的值(
A.
B.﹣3
C.1
D.3

【答案】D
【解析】解:由題意得,函數(shù)f(x)的定義域是{x|x≠0}, ∵[m,n]是其定義域的子集,∴[m,n](﹣∞,0)或(0,+∞).
∵f(x)= 在[m,n]上是增函數(shù),
∴由條件得 ,則m,n是方程f(x)=x的同號(hào)相異的實(shí)數(shù)根,
即m,n是方程(ax)2﹣(a2+a)x+1=0同號(hào)相異的實(shí)數(shù)根.
∴mn= ,m+n= = ,
則△=(a2+a)2﹣4a2>0,解得a>1或a<﹣3.
∴n﹣m= = =
= ,
∴n﹣m的最大值為 ,此時(shí) ,解得a=3,
即在區(qū)間[m,n]的最大長(zhǎng)度為 時(shí),a的值是3.
故選D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的值域(求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】14分)已知ab為常數(shù),且a≠0,函數(shù)fx=﹣ax+b+axlnx,fe=2e=2.71828…是自然對(duì)數(shù)的底數(shù)).

I)求實(shí)數(shù)b的值;

II)求函數(shù)fx)的單調(diào)區(qū)間;

III)當(dāng)a=1時(shí),是否同時(shí)存在實(shí)數(shù)mMmM),使得對(duì)每一個(gè)t∈[m,M],直線(xiàn)y=t與曲線(xiàn)y=fx)(x∈[,e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好地了解鯨的生活習(xí)性,某動(dòng)物保護(hù)組織在受傷的鯨身上安裝了電子監(jiān)測(cè)設(shè)備,從海岸線(xiàn)放歸點(diǎn)處把它放歸大海,并沿海岸線(xiàn)由西到東不停地對(duì)其進(jìn)行跟蹤觀測(cè)。在放歸點(diǎn)的正東方向有一觀測(cè)站,可以對(duì)鯨進(jìn)行生活習(xí)性的詳細(xì)觀測(cè)。已知,觀測(cè)站的觀測(cè)半徑為.現(xiàn)以點(diǎn)為坐標(biāo)原點(diǎn)、以由西向東的海岸線(xiàn)所在直線(xiàn)為軸建立平面直角坐標(biāo)系,則可以測(cè)得鯨的行進(jìn)路線(xiàn)近似的滿(mǎn)足.

(1)若測(cè)得鯨的行進(jìn)路線(xiàn)上一點(diǎn),的值;

(2)在(1)問(wèn)的條件下,問(wèn):

當(dāng)鯨運(yùn)動(dòng)到何處時(shí),開(kāi)始進(jìn)入觀測(cè)站的觀測(cè)區(qū)域內(nèi)?(計(jì)算結(jié)果精確到0.1)

當(dāng)鯨運(yùn)動(dòng)到何處時(shí),離觀測(cè)站距離最近觀測(cè)最便利)?(計(jì)算結(jié)果精確到0.1)

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax2(a∈R)
(Ⅰ) 討論f(x)的單調(diào)性;
(Ⅱ) 若對(duì)于x∈(0,+∞),f(x)≤a﹣1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓的右焦點(diǎn),點(diǎn)上,且軸.

(1)求的方程

(2)過(guò)的直線(xiàn)兩點(diǎn),交直線(xiàn)于點(diǎn).證明:直線(xiàn)的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三次函數(shù)f(x)=x3+bx2+cx+d(a,b,c∈R)過(guò)點(diǎn)(3,0),且函數(shù)f(x)在點(diǎn)(0,f(0))處的切線(xiàn)恰好是直線(xiàn)y=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=9x+m﹣1,若函數(shù)y=f(x)﹣g(x)在區(qū)間[﹣2,1]上有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=cos(x+ ),則下列結(jié)論錯(cuò)誤的是( )
A.f(x)的一個(gè)周期為﹣2π
B.y=f(x)的圖象關(guān)于直線(xiàn)x= 對(duì)稱(chēng)
C.f(x+π)的一個(gè)零點(diǎn)為x=
D.f(x)在( ,π)單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,

1)若 的充分條件,求實(shí)數(shù) 的取值范圍;

(2)若 ,”為真命題,“”為假命題,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科研機(jī)構(gòu)研發(fā)了某種高新科技產(chǎn)品,現(xiàn)已進(jìn)入實(shí)驗(yàn)階段.已知實(shí)驗(yàn)的啟動(dòng)資金為10萬(wàn)元,從實(shí)驗(yàn)的第一天起連續(xù)實(shí)驗(yàn),第天的實(shí)驗(yàn)需投入實(shí)驗(yàn)費(fèi)用為,實(shí)驗(yàn)30天共投入實(shí)驗(yàn)費(fèi)用17700元.

(1)求的值及平均每天耗資最少時(shí)實(shí)驗(yàn)的天數(shù);

(2)現(xiàn)有某知名企業(yè)對(duì)該項(xiàng)實(shí)驗(yàn)進(jìn)行贊助,實(shí)驗(yàn)天共贊助.為了保證產(chǎn)品質(zhì)量,至少需進(jìn)行50天實(shí)驗(yàn),若要求在平均每天實(shí)際耗資最小時(shí)結(jié)束實(shí)驗(yàn),求的取值范圍.(實(shí)際耗資=啟動(dòng)資金+試驗(yàn)費(fèi)用-贊助費(fèi))

查看答案和解析>>

同步練習(xí)冊(cè)答案