【題目】己知函數(shù),.
(1)畫出的大致圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)且時(shí),求的取值范圍;
(3)是否存在實(shí)數(shù)a,b, 使得函數(shù)在上的值域也是?若存在,求出a,b的值,若不存在,說明理由.
【答案】(1)
單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為
(2) ;(3) 存在使得函數(shù)在上的值域也是
【解析】
(1)根據(jù)函數(shù)圖像的變換分析即可.
(2)根據(jù)(1)中圖像可知,時(shí),再根據(jù)對應(yīng)的解析式求得再代入求取值范圍即可.
(3)分,與三種情況分析即可.
(1) 可看做向下平移3個(gè)單位得到
.再將軸下方的圖像沿軸向上翻折即可.
注意零點(diǎn)為且以為漸近線.
故在上單調(diào)遞減, 在上單調(diào)遞增
(2)由(1)中圖像知,當(dāng)時(shí),且.
故,即.
令,因?yàn)?/span>故
故.
即的取值范圍為.
(3)當(dāng)時(shí),故若存在實(shí)數(shù)a,b,使得函數(shù)在上的值域也是,則均不為.
①當(dāng)時(shí),為減函數(shù),此時(shí)有故,
不滿足
②當(dāng)時(shí),因?yàn)?/span>,即不滿足.
③當(dāng)時(shí), 此時(shí)故 .
即是方程的兩根.解得.滿足.
綜上, 存在使得函數(shù)在上的值域也是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.
(1)當(dāng)時(shí),求的極大值點(diǎn)和極小值點(diǎn);
(2)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為數(shù)列的前n項(xiàng)和,,當(dāng)n≥2時(shí),,又.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列落在區(qū)間內(nèi)的項(xiàng)數(shù)為,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的零點(diǎn)之和;
(2)已知,討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)),方程有兩個(gè)實(shí)根3和4,
(1)求的解析式;
(2)設(shè),解關(guān)于x的不等式;
(3)已知函數(shù)是偶函數(shù),且在上單調(diào)遞增,若不等式在任意上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)的直線與該橢圓交于兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中, 是正方形, 是梯形, , , 平面且, 分別為棱的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實(shí)行新高考制度,從2018年下學(xué)期的高一年級學(xué)生開始實(shí)行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計(jì)分析中,高二某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:
(1)求該班數(shù)學(xué)成績在的頻率及全班人數(shù);
(2)根據(jù)頻率分布直方圖估計(jì)該班這次測評的數(shù)學(xué)平均分;
(3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com