分析 把已知數(shù)列遞推式兩邊同時除以3n,然后利用累加法求得答案.
解答 解:由an=3an-1+3n-1(n≥2),
得$\frac{{a}_{n}}{{3}^{n}}=\frac{{a}_{n-1}}{{3}^{n-1}}+1-\frac{1}{{3}^{n}}$(n≥2),
∴$\frac{{a}_{2}}{{3}^{2}}=\frac{{a}_{1}}{{3}^{1}}+1-\frac{1}{{3}^{2}}$,
$\frac{{a}_{3}}{{3}^{3}}=\frac{{a}_{2}}{{3}^{2}}+1-\frac{1}{{3}^{3}}$,
$\frac{{a}_{4}}{{3}^{4}}=\frac{{a}_{3}}{{3}^{3}}+1-\frac{1}{{3}^{4}}$,
…
$\frac{{a}_{n}}{{3}^{n}}=\frac{{a}_{n-1}}{{3}^{n-1}}+1-\frac{1}{{3}^{n}}$(n≥2),
累加得:$\frac{{a}_{n}}{{3}^{n}}=\frac{{a}_{1}}{3}+(n-1)-\frac{\frac{1}{9}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$=$\frac{{a}_{1}}{3}+(n-1)-\frac{1}{6}+\frac{1}{2•{3}^{n}}$,
∵a1=5,
∴${a}_{n}={3}^{n}(n+\frac{1}{2})+\frac{1}{2}$(n≥2).
驗證n=1時上式成立,
∴${a}_{n}={3}^{n}(n+\frac{1}{2})+\frac{1}{2}$.
故答案為:${3^n}({n+\frac{1}{2}})+\frac{1}{2}$.
點評 本題考查數(shù)列遞推式,訓(xùn)練了累加法求數(shù)列的通項公式,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-i | B. | -2-i | C. | 2+i | D. | -2+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2a)<f(-a) | B. | f(π)>f(-3) | C. | $f(-\frac{{\sqrt{3}}}{2})<f(\frac{4}{5})$ | D. | f(a2+1)<f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AB}=\overrightarrow{DC}$ | B. | $\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AC}$ | C. | $\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{BD}$ | D. | $\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{BD}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com