【題目】如圖,在直角坐標 中,設(shè)橢圓 的左右兩個焦點分別為 ,過右焦點 且與 軸垂直的直線 與橢圓 相交,其中一個交點為 .
(1)求橢圓 的方程;
【答案】
(1)解:由橢圓定義可知
由題意 , .
又由Rt△ 可知 , , ,
又 ,得
橢圓 的方程為
(2)已知 經(jīng)過點 且斜率為 直線 與橢圓 有兩個不同的 和 交點,請問是否存在常數(shù) ,使得向量 與 共線?如果存在,求出 的值;如果不存在,請說明理由.
解:設(shè)直線 的方程為 ,
代入橢圓方程,得 .
整理,得 ①
因為直線 與橢圓 有兩個不同的交點 和 等價于 ,
解得 .
設(shè) ,則 = ,
由①得 ②
又 ③
因為 , 所以 .
所以 與 共線等價于 .
將②③代入上式,解得 .
因為
所以不存在常數(shù) ,使得向量 與 共線
【解析】(1)根據(jù)題目中所給的條件的特點,由橢圓定義可知|MF1|+|MF2|=2a,由題意|MF2|=1,由Rr△MF1F2可知b的值,則橢圓C的方程可求;
(2)利用向量共線的條件建立等式,再根據(jù)韋達定理,由此能求出不存在這樣的常數(shù)k滿足條件.解題時要認真審題,注意向量共線的條件的合理運用.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,直角梯形ACDE與等腰直角三角形ABC所在平面互相垂直,F為BC的中點,, ,.
(1)求證:平面平面;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共 個,生產(chǎn)一個衛(wèi)兵需 分鐘,生產(chǎn)一個騎兵需 分鐘,生產(chǎn)一個傘兵需 分鐘,已知總生產(chǎn)時間不超過 小時,若生產(chǎn)一個衛(wèi)兵可獲利潤 元,生產(chǎn)一個騎兵可獲利潤 元,生產(chǎn)一個傘兵可獲利潤 元.
(1)用每天生產(chǎn)的衛(wèi)兵個數(shù) 與騎兵個數(shù) 表示每天的利潤 (元);
(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面α過正方體ABCD﹣A1B1C1D1的面對角線 ,且平面α⊥平面C1BD,平面α∩平面ADD1A1=AS,則∠A1AS的正切值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點,側(cè)面PAD⊥底面ABCD.
(1)求證:EF∥平面PAD;
(2)若EF⊥PC,求證:平面PAB⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“石頭、剪刀、布”,又稱“猜丁殼”,是一種流傳多年的猜拳游戲,起源于中國,然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在話音剛落時同時出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過“石頭”.若所出的拳相同,則為和局.小千和大年兩位同學進行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小千和大年比賽至第四局小千勝出的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在四棱錐C﹣ABDE中,DB⊥平面ABC,AE∥DB,△ABC是邊長為2的等邊三角形,AE=1,M為AB的中點.
(1)求證:CM⊥EM;
(2)若直線DM與平面ABC所成角的正切值為2,求二面角B﹣CD﹣E的大�。�
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com