如圖點(diǎn)F為雙曲線C的左焦點(diǎn),左準(zhǔn)線l交x軸于點(diǎn)Q,點(diǎn)P是l上的一點(diǎn)|PQ|=|FQ|=1,且線段PF的中點(diǎn)M在雙曲線C的左支上.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)F的直線m與雙曲線C的左右兩支分別交于A、B兩點(diǎn),設(shè)
FB
FA
,當(dāng)λ∈[6,+∞)時(shí),求直線m的斜率k的取值范圍.
分析:(1)設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),則c2=a2+b2,|FQ|=c-
a2
c
=1
由此能求出雙曲線方程.(2)F(-2,0),設(shè)A(x1,y2),B(x2,y2),m:y=k(x+2),由
FB
FA
,得x2=λ(x1+2)-2,y2=λy1,由
y=k(x+2)
x2-y2=2
,得(1-k2)y2-4ky+2k2=0.由此能求出直線m的斜率k的取值范圍.
解答:解:(Ⅰ)設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),
則c2=a2+b2|FQ|=c-
a2
c
=1
,∴b2=c.------------------------(2分)
M(-c+
1
2
,
1
2
)
在雙曲線上,∴
(
1
2
-c)
2
a2
-
(
1
2
)
2
b2
=1

聯(lián)立①②③,解得a=b=
2
,c=2.∴雙曲線方程為x2-y2=2.--------(4分)
注:對(duì)點(diǎn)M用第二定義,得e=
2
,可簡(jiǎn)化計(jì)算.
(Ⅱ)F(-2,0),設(shè)A(x1,y2),B(x2,y2),m:y=k(x+2),則
FB
FA
,得x2=λ(x1+2)-2,y2=λy1.--------------------(6分)
y=k(x+2)
x2-y2=2
,得(1-k2)y2-4ky+2k2=0.
y1+y2=
4k
1-k2
,y1y2=
2k2
1-k2
.△=16k2-8k2(1-k2)=8k2(1+k2).
由y2=λy1,y1+y2=
4k
1-k2
,y1y2=
2k2
1-k2
,---------------------(8分)
消去y1,y2,
8
1-k2
=
(1+λ)2
λ
=λ+
1
λ
+2
.------------------------(9分)
∵λ≥6,函數(shù)g(λ)=λ+
1
λ
+2
在(1,+∞)上單調(diào)遞增,
8
1-k2
≥6+
1
6
+2=
49
6
,∴k2
1
49
.------------------------(10分)
又直線m與雙曲線的兩支相交,即方程(1-k2)y2-4ky+2k2=0兩根同號(hào),
∴k2<1.------------------------------------------------(11分)
1
49
k2<1
,故.------------------------(12分)
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與橢圓的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,F(xiàn)為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn).P為雙曲線C右支上一點(diǎn),且位于x軸上方,M為左準(zhǔn)線上一點(diǎn),O為坐標(biāo)原點(diǎn).已知四邊形OFPM為平行四邊形,|PF|=λ|OF|.
(Ⅰ)寫出雙曲線C的離心率e與λ的關(guān)系式;
(Ⅱ)當(dāng)λ=1時(shí),經(jīng)過(guò)焦點(diǎn)F且平行于OP的直線交雙曲線于A、B點(diǎn),若|AB|=12,求此時(shí)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重慶八中2009屆高三下學(xué)期第二次月考數(shù)學(xué)文科試題 題型:044

如圖點(diǎn)F為雙曲線C的左焦點(diǎn),左準(zhǔn)線l交x軸于點(diǎn)Q,點(diǎn)P是l上的一點(diǎn)|PQ|=|FQ|=1,且線段PF的中點(diǎn)M在雙曲線C的左支上.

(1)求雙曲線C的標(biāo)準(zhǔn)方程;

(2)若過(guò)點(diǎn)F的直線m與雙曲線C的左右兩支分別交于A、B兩點(diǎn),設(shè),當(dāng)λ∈[6,+∞)時(shí),求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重慶市萬(wàn)州二中2011屆高三3月月考數(shù)學(xué)文科試題 題型:044

如圖點(diǎn)F為雙曲線C的左焦點(diǎn),左準(zhǔn)線l交x軸于點(diǎn)Q,點(diǎn)Pl上的一點(diǎn)|PQ|=|FQ|=1,且線段PF的中點(diǎn)M在雙曲線C的左支上.

(1)求雙曲線C的標(biāo)準(zhǔn)方程;

(2)若過(guò)點(diǎn)F的直線m與雙曲線C的左右兩支分別交于A、B兩點(diǎn),設(shè),當(dāng)λ∈[6,+∞)時(shí),求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市萬(wàn)州二中高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖點(diǎn)F為雙曲線C的左焦點(diǎn),左準(zhǔn)線l交x軸于點(diǎn)Q,點(diǎn)P是l上的一點(diǎn)|PQ|=|FQ|=1,且線段PF的中點(diǎn)M在雙曲線C的左支上.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)F的直線m與雙曲線C的左右兩支分別交于A、B兩點(diǎn),設(shè),當(dāng)λ∈[6,+∞)時(shí),求直線m的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案