1.已知A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標(biāo)為(2,0),則|$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}$|的最大值為( 。
A.6B.7C.8D.9

分析 由題意,AC為直徑,所以|$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}$|=|2$\overrightarrow{PO}$+$\overrightarrow{PB}$|.B為(-1,0)時,|2$\overrightarrow{PO}$+$\overrightarrow{PB}$|≤7,即可得出結(jié)論.

解答 解:由題意,AC為直徑,所以|$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}$|=|2$\overrightarrow{PO}$+$\overrightarrow{PB}$|
所以B為(-1,0)時,|2$\overrightarrow{PO}$+$\overrightarrow{PB}$|≤7.
所以|$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}$|的最大值為7.
另解:設(shè)B(cosα,sinα),
|2$\overrightarrow{PO}$+$\overrightarrow{PB}$|=|2(-2,0)+(cosα-2,sinα)|=|(cosα-6,sinα)|=$\sqrt{(cosα-6)^{2}+si{n}^{2}α}$=$\sqrt{37-12cosα}$,
當(dāng)cosα=-1時,B為(-1,0),取得最大值7.
故選:B.

點評 本題考查向量知識的運用,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)四邊形ABCD為平行四邊形,|$\overrightarrow{AB}$|=6,|$\overrightarrow{AD}$|=4,若點M、N滿足$\overrightarrow{BM}=3\overrightarrow{MC}$,$\overrightarrow{DN}=2\overrightarrow{NC}$,則$\overrightarrow{AM}•\overrightarrow{NM}$=( 。
A.20B.15C.9D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,△ABC及其內(nèi)部的點組成的集合記為D,P(x,y)為D中任意一點,則z=2x+3y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是偶函數(shù)又存在零點的是( 。
A.y=lnxB.y=x2+1C.y=sinxD.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,如果輸入n=3,則輸出的S=( 。
A.$\frac{6}{7}$B.$\frac{3}{7}$C.$\frac{8}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)Sn為等比數(shù)列{an}的前n項和,若a1=1,且3S1,2S2,S3成等差數(shù)列,則an=3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若變量x,y滿足約束條件$\left\{\begin{array}{l}{4x+5y≥8}\\{1≤x≤3}\\{0≤y≤2}\end{array}\right.$,則z=3x+2y的最小值為( 。
A.4B.$\frac{23}{5}$C.6D.$\frac{31}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)在[-$\frac{2}{3}$π,$\frac{2}{3}$π]上單調(diào)遞增,求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{m}$=(2sinx,-1),$\overrightarrow{n}$=(sinx-$\sqrt{3}$cosx,-2),函數(shù)f(x)=($\overrightarrow{m}$-$\overrightarrow{n}$)•$\overrightarrow{m}$+t.
(Ⅰ)若f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上有三個零點,求t的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,a=4,△ABC的面積S=$\sqrt{3}$,若f(A)=2,且t=0,求b+c的值.

查看答案和解析>>

同步練習(xí)冊答案