分析 根據(jù)三角函數(shù)的單調(diào)性求出函數(shù)的遞增求解,結(jié)合函數(shù)單調(diào)區(qū)間端點(diǎn)之間的關(guān)系進(jìn)行求解即可.
解答 解:函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)在[-$\frac{2}{3}$π,$\frac{2}{3}$π]上單調(diào)遞,可得ω>0
由2kπ-$\frac{π}{2}$≤ωx+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
得$\frac{2kπ}{ω}$-$\frac{5π}{6ω}$≤x≤$\frac{2kπ}{ω}$+$\frac{π}{6ω}$,(ω>0)
∵函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)在[-$\frac{2}{3}$π,$\frac{2}{3}$π]上單調(diào)遞增,
∴當(dāng)k=0時(shí),函數(shù)的遞增區(qū)間為-$\frac{5π}{6ω}$≤x≤$\frac{π}{6ω}$,
則滿足$\left\{\begin{array}{l}{\frac{π}{6ω}≥\frac{2π}{3}}\\{-\frac{5π}{6ω}≤-\frac{2π}{3}}\end{array}\right.$,
即$\left\{\begin{array}{l}{ω≤\frac{1}{4}}\\{ω≤\frac{5}{4}}\end{array}\right.$,即0<ω≤$\frac{1}{4}$,
故ω的最大值為$\frac{1}{4}$.
點(diǎn)評 本題主要考查三角函數(shù)單調(diào)性和單調(diào)區(qū)間的求解,根據(jù)條件建立不等式關(guān)系是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$,$\frac{1}{2}$) | B. | (0,1) | C. | ($\frac{1}{3}$,1) | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,4] | B. | [-4,4] | C. | [-2,4] | D. | [-1,4] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com