【題目】給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=( )2表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標系的原點;
③若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4];
④設函數(shù)f(x)是在區(qū)間[a,b]上圖象連續(xù)的函數(shù),且f(a)f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實根;
其中正確命題的序號是(填上所有正確命題的序號)
【答案】④
【解析】解:①函數(shù)y=|x|的定義域為R,函數(shù)y=( )2定義域為[0,+∞),兩函數(shù)的定義域不同,不是同一函數(shù),①錯誤
②函數(shù)y= 為奇函數(shù),但其圖象不過坐標原點,②錯誤
③∵函數(shù)f(x)的定義域為[0,2],要使函數(shù)f(2x)有意義,需0≤2x≤2,即x∈[0,1],故函數(shù)f(2x)的定義域為[0,1],錯誤;
④函數(shù)f(x)是在區(qū)間[a.b]上圖象連續(xù)的函數(shù),f(a)f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實根,④正確.
所以答案是④.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的概念及其構成要素的相關知識可以得到問題的答案,需要掌握函數(shù)三要素是定義域,對應法則和值域,而定義域和對應法則是起決定作用的要素,因為這二者確定后,值域也就相應得到確定,因此只有定義域和對應法則二者完全相同的函數(shù)才是同一函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】為選拔選手參加“中國謎語大會”,某中學舉行了一次“謎語大賽”活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進行統(tǒng)計.按照, , , , 的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).
(Ⅰ)求樣本容量和頻率分布直方圖中的、的值;
(Ⅱ)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取3
名學生參加“中國謎語大會”,設隨機變量表示所抽取的3名學生中得分在內(nèi)的學生人數(shù),求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線y2=2px(p>0)的焦點F的直線l與拋物線在第一象限的交點為A,與拋物線的準線的交點為B,點A在拋物線準線上的射影為C,若=,=48,則拋物線的方程為( )
A.y2=4x
B.y2=8x
C.y2=16x
D.y2=4X
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點構成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓的任意一條切線與橢圓E相交于P,Q兩點,試問: 是否為定值? 若是,求這個定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a為實數(shù),p:點M(1,1)在圓(x+a)2+(y﹣a)2=4的內(nèi)部; q:x∈R,都有x2+ax+1≥0.
(1)若p為真命題,求a的取值范圍;
(2)若q為假命題,求a的取值范圍;
(3)若“p且q”為假命題,且“p或q”為真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),且函數(shù)的最小正周期為.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0,]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過拋物線y2=2px(p>0)的焦點,斜率為2的直線交拋物線于A(x1 , y1)和B(x2 , y2)(x1<x2)兩點,且|AB|=9,
(1)求該拋物線的方程;
(2)O為坐標原點,C為拋物線上一點,若=+λ , 求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設{an}是正項等比數(shù)列,令Sn=lga1+lga2+…+lgan , n∈N* , 若存在互異的正整數(shù)m,n,使得Sm=Sn , 則Sm+n= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com