13.4名學(xué)生排一排,甲乙站在一起的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{27}$C.$\frac{1}{18}$D.$\frac{1}{2}$

分析 4名學(xué)生排一排,先求出基本事件總數(shù),再求出甲乙站在一起包含聽基本事件個數(shù),由此能求出甲乙站在一起的概率.

解答 解:4名學(xué)生排一排,基本事件總數(shù)n=${A}_{4}^{4}$=24,
甲乙站在一起包含聽基本事件個數(shù)m=${A}_{2}^{2}{A}_{3}^{3}$=12,
∴甲乙站在一起的概率p=$\frac{m}{n}=\frac{12}{24}=\frac{1}{2}$.
故選:D.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線x+y+3=0與直線x-2y+3=0的交點坐標(biāo)為(  )
A.(-3,0)B.(-2,-3)C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果某射手每次射擊擊中目標(biāo)的概率為0.74,每次射擊的結(jié)果相互獨立,那么他在10次射擊中,最有可能擊中目標(biāo)幾次( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2-$\frac{2}{a}$x+2+b滿足對任意的實數(shù)x都有f(1-x)=f(1+x),且f(x)的值域為[1,+∞)
(1)求a,b的值;
(2)若g(x)=f(x)-mx在[2,4]上為單調(diào)函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+m|+|x-$\frac{1}{m}}$|,其中m>0.
(1)當(dāng)m=1時,解不等式f(x)≤4;
(2)若a∈R,且a≠0,證明:f(-a)+f(${\frac{1}{a}}$)≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.非空集合G關(guān)于運算⊕滿足:
(1)對任意a,b∈G,都有a⊕b∈G;
(2)存在c∈G,使得對一切a∈G,都有a⊕c=c⊕a=a,則稱G關(guān)于運算⊕為“融洽集”.
在下列集合和運算中,G關(guān)于運算⊕為“融洽集”的是( 。
A.G=N+,⊕為整數(shù)的加法B.G=N,⊕為整數(shù)的加法
C.G=Z,⊕為整數(shù)的減法D.G={x|x=2n,n∈Z},⊕為整數(shù)的乘法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在正三棱柱ABC-A1B1C1中,AB=2$\sqrt{2}$,點D,E分別是棱AB,BB1的中點,若DE⊥EC1,則側(cè)棱AA1的長為$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=x2+3x+2在區(qū)間[-5,5]上的最大值為42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{a}$=(4,3),$\overrightarrow$=(-2,1),如果向量$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow$垂直,則λ的值為1.

查看答案和解析>>

同步練習(xí)冊答案