已知二次函數(shù)g(x)對任意實數(shù)x不等式x-1≤g(x)≤x2-x恒成立,且g(-1)=0,令
(I)求g(x)的表達式;
(Ⅱ)若?x>0使f(x)≤0成立,求實數(shù)m的取值范圍;
(Ⅲ)設1<m≤e,H(x)=f(x)-(m+1)x,證明:對?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.
【答案】分析:(I)直接設出g(x)的表達式,利用不等式x-1≤g(x)≤x2-x恒成立,可得g(1)=0與g(-1)=0相結(jié)合可得b=0,a+c=0;再代入利用不等式x-1≤g(x)≤x2-x恒成立求出a即可.
(II)先求出函數(shù)f(x)的表達式,在對實數(shù)m分情況求出對應函數(shù)f(x)的值域,讓實數(shù)m與函數(shù)f(x)的最小值比較即可求實數(shù)m的取值范圍;
(III)先求出函數(shù)H(x)在[1,m]單減,進而得,轉(zhuǎn)化為求的最大值問題即可.
解答:解(I)設g(x)=ax2+bx+c(a≠0),
由題意令x=1得0≤g(1)≤0∴g(1)=0,
得b=0,a+c=0,
∵x-1≤g(x)≤x2-x對?x∈R恒成立,
∴ax2-a≥x-1和ax2-a≤x2-x恒成立,



(II)=,

當m>0時,f(x)的值域為R
當m=0時,恒成立
當m<0時,令
x
f'(x)-+
f(x)極小
這時
若?x>0使f(x)≤0成立則只須f(x)min≤0即m≤-e,
綜上所述,實數(shù)m的取值范圍(-∞,-e)∪(0,+∞).

(III)∵,所以H(x)在[1,m]單減
于是
,
,則
所以函數(shù)h(m)在[1,e]是單增函數(shù)
所以
故命題成立.
點評:本題主要考查函數(shù)恒成立問題以及函數(shù)解析式的求法,是對函數(shù)以及導函數(shù)知識的綜合考查,是有難度的題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.
(1)求g(x)的表達式;
(2)設1<m≤e,H(x)=g(x+
1
2
)+mlnx-(m+1)x+
9
8
,求證:H(x)在[1,m]上為減函數(shù);
(3)在(2)的條件下,證明:對任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)g(x)對任意實數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=g(x+
1
2
)+mlnx+
9
8
(m∈R,x>0)

(1)求g(x)的表達式;
(2)若?x>0使f(x)≤0成立,求實數(shù)m的取值范圍;
(3)設1<m≤e,H(x)=f(x)-(m+1)x,證明:對?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)g(x)的圖象經(jīng)過坐標原點,且滿足g(x+1)=g(x)+2x+1,設函數(shù)f(x)=mg(x)-ln(x+1),其中m為非零常數(shù)
(1)求函數(shù)g(x)的解析式;
(2)當-2<m<0時,判斷函數(shù)f(x)的單調(diào)性并且說明理由;
(3)證明:對任意的正整數(shù)n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)g(x)對任意實數(shù)x不等式x-1≤g(x)≤x2-x恒成立,且g(-1)=0,令f(x)=g(x)+mlnx+
12
(m∈R)

(I)求g(x)的表達式;
(Ⅱ)若?x>0使f(x)≤0成立,求實數(shù)m的取值范圍;
(Ⅲ)設1<m≤e,H(x)=f(x)-(m+1)x,證明:對?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)g(x)的圖象經(jīng)過坐標原點,且滿足g(x+1)=g(x)+2x+1,設函數(shù)f(x)=m[g(x+1)-1]-lnx,其中m為常數(shù)且m≠0.
(1)求函數(shù)g(x)的解析式;
(2)當-2<m<0時,判斷函數(shù)f(x)的單調(diào)性并且說明理由.

查看答案和解析>>

同步練習冊答案