如圖所示,已知四邊形ABCD內接于⊙O,∠C=130°,AD是⊙O的直徑,過B作⊙O的切線FE,求∠ABE的度數(shù).

140°

解析解 因為四邊形ABCD為⊙O的內接四邊形,∠C=130°,所以∠A=50°.
連接OB,則∠ABO=50°,所以∠AOB=80°.

又因為∠ABF=∠AOB=40°,
所以∠ABE=180°-∠ABF=180°-40°=140°,
即∠ABE=140°.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知A、B、C三點的坐標分別為(0,1)、(-1,0)、(1,0),P是線段AC上一點,BP交AO于點D,設三角形ADP的面積為S,點P的坐標為(x,y),求S關于x的函數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,過圓O外一點P作該圓的兩條割線PABPCD,分別交圓O于點AB,C,D,弦ADBC交于點Q,割線PEF經(jīng)過點Q交圓O于點EF,點MEF上,且∠BAD=∠BMF.

(1)求證:PA·PBPM·PQ;
(2)求證:∠BMD=∠BOD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,D為△ABC中BC邊上的一點,∠CAD=∠B,若AD=6,AB=8,BD=7,求DC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(拓展深化)如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F(xiàn)在AC上,且AE=AF.

(1)證明:B、D、H、E四點共圓;
(2)證明:CE平分∠DEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,延長BC到D,使CD=BC,取AB的中點F,連接FD交AC于點E.

(1)求的值;
(2)若AB=a,F(xiàn)B=EC,求AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(拓展深化)如圖①所示,△ABC內接于⊙O,AB=AC,D是BC邊上的一點,E是直線AD和△ABC外接圓的交點.

(1)求證:AB2=AD·AE;
(2)如圖②所示,當D為BC延長線上的一點時,第(1)題的結論成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知在△ABC中,ABAC,D是△ABC外接圓劣弧上的點(不與點AC重合),延長BDE.

(1)求證:AD的延長線平分∠CDE
(2)若∠BAC=30°,△ABCBC邊上的高為2+,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知⊙O的半徑為1,MN是⊙O的直徑,過M點作⊙O的切線AM,C是AM的中點,AN交⊙O于B點,若四邊形BCON是平行四邊形.

(Ⅰ)求AM的長;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

同步練習冊答案