18.(Ⅰ)已知$f(α)=\frac{sin(π-α)cos(2π-α)tan(-α+π)}{tan(-π-α)sin(-π-α)}$,若α是第三象限角,且$cos({α-\frac{3π}{2}})=\frac{{2\sqrt{6}}}{5}$,求f(α)的值
(Ⅱ) 已知$α,β∈(0,\frac{π}{4}),且3sinβ=sin(2α+β),\begin{array}{l}{\;}{4tan\frac{α}{2}=1-{{tan}^2}}\end{array}\frac{α}{2}$,求α+β的值.

分析 (Ⅰ)由條件利用誘導(dǎo)公式化簡所給的式子求得sinα的值,可得cosα的值,從而求得f(α)的值.
(Ⅱ)先利用二倍角的正切公式求得tanα的值,再根據(jù)3sinβ=sin(2α+β) 求得tan(α+β)的值,從而求得α+β的值.

解答 解:(Ⅰ)$f(α)=\frac{sin(π-α)cos(2π-α)tan(-α+π)}{tan(-α-π)sin(-π-α)}=\frac{sinαcosα(-tanα)}{-tanαsinα}=cosα$.
∵α為第三象限角,且$cos(α-\frac{3π}{2})=-sinα=\frac{{2\sqrt{6}}}{5}$,∴sinα=-$\frac{2\sqrt{6}}{5}$,
∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{1}{5}$,∴$f(α)=cosα=-\frac{1}{5}$.
(Ⅱ)∵$\frac{{2tan\frac{α}{2}}}{{1-{{tan}^2}\frac{α}{2}}}=\frac{1}{2}$,∴$tanα=\frac{1}{2}$.
∵3sinβ=sin(2α+β),∴3sin[(α+β)-α]=sin[(α+β)-α],
∴3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα-cos(α+β)sinα,
求得tan(α+β)=2tanα=1.
∵$α,β∈(0,\frac{π}{4})$,∴$α+β∈({0,\frac{π}{2}})$,∴$α+β=\frac{π}{4}$.

點(diǎn)評 本題主要考查誘導(dǎo)公式,兩角和差的三角公式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知log23=t,則log4854=$\frac{1+3t}{4+t}$(用t表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.有如圖所示的五種塑料薄板(厚度不計(jì)):
①兩直角邊分別為3、4的直角三角形ABC;
②腰長為4、頂角為36°的等腰三角形JKL;
③腰長為5、頂角為120°的等腰三角形OMN;
④兩對角線和一邊長都是4且另三邊長相等的凸四邊形PQRS;
⑤長為4且寬(小于長)與長的比是黃金分割比的黃金矩形WXYZ.
它們都不能折疊,現(xiàn)在將它們一一穿過一個(gè)內(nèi)、外徑分別為2.4、2.7的鐵圓環(huán).
我們規(guī)定:如果塑料板能穿過鐵環(huán)內(nèi)圈,則稱為此板“可操作”;否則,便稱為“不可操作”.
(1)證明:第④種塑料板“可操作”;
(2)求:從這五種塑料板中任意取兩種至少有一種“不可操作”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知不等式-x2-x+6>0,則該不等式的解集是(  )
A.(-2,3)B.(-3,2)C.(-∞,-3)∪(2,+∞)D.(-∞,-2)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱.若對任意的x,y∈R,不等式f(x2-6x-21)+f(2x)<0恒成立,x的取值范圍是( 。
A.(-3,7)B.(-9,2)C.( 3,7)D.(2,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{(x-1)^{2015}+2015x+sin(x-1)=2016}\\{(y-1)^{2015}+2015y+sin(y-1)=2014}\end{array}\right.$,則x+y=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.探究:要使下列事實(shí)成立,非零向量$\overrightarrow{a}$,$\overrightarrow$應(yīng)分別滿足什么條件?
(1)$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$共線;
(2)$\overrightarrow{a}$+$\overrightarrow$平分$\overrightarrow{a}$,$\overrightarrow$b所成的角;
(3)|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$$-\overrightarrow$|;
(4)|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|;
(5)|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.按下列要求從12人中選出5人參加某項(xiàng)公益動(dòng).分別有多少種不同的選法?
(1)甲、乙兩人都不入選.
(2)甲、乙兩人至多1人入選.
(3)甲、乙、丙3人至少有1人入選.
(4)甲、乙、丙3人至多有2人入選.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{bn}的前n項(xiàng)和為Sn,數(shù)列{$\sqrt{{S}_{n}}$}是個(gè)首項(xiàng)為1公差為1的等差數(shù)列.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和為Tn,問滿足Tn>$\frac{1000}{2009}$的最小正整數(shù)n是多少?

查看答案和解析>>

同步練習(xí)冊答案