如圖,ABCD-A1B1C1D1為正方體,下面結論錯誤的是( )
A.BD∥平面CB1D1
B.AC1⊥BD
C.AC1⊥平面CB1D1
D.異面直線AD與CB1所成的角為60°
【答案】分析:A中因為BD∥B1D1可判,B和C中可由三垂線定理進行證明;而D中因為CB1∥D1A,所以∠D1AD即為異面直線所成的角,∠D1AD=45°.
解答:解:A中因為BD∥B1D1,正確;B中因為AC⊥BD,由三垂線定理知正確;
C中有三垂線定理可知AC1⊥B1D1,AC1⊥B1C,故正確;
D中顯然異面直線AD與CB1所成的角為45°
故選D
點評:本題考查正方體中的線面位置關系和異面直線所成的角,考查邏輯推理能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.
(1)求證:A1F⊥C1E;
(2)當A1、E、F、C1共面時,求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結論中正確的是
①②④
①②④
.(把你認為正確的結論都填上)
①BD∥平面CB1D1;
②AC1⊥平面CB1D1;
③AC1與底面ABCD所成角的正切值是
2

④二面角C-B1D1-C1的正切值是
2
;
⑤過點A1與異面直線AD與CB1成70°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結論中正確的結論是
①②
①②
.(把你認為正確的結論都填上)
①BD∥平面CB1D1;
②AC1⊥平面CB1D1
③過點A1與異面直線AD和CB1成90°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD—A1B1C1D1中,點O是B1D1的中點,直線A1C交平面AB1D1于點M,對下列結論,錯誤的是(    )

A.A、M、O三點共線                      B.A、M、O、A1四點共面

C.A、O、C、M四點共面                 D.B、B1、O、M四點共面

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省江門市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.
(1)求證:A1F⊥C1E;
(2)當A1、E、F、C1共面時,求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

同步練習冊答案