某工科院校對(duì)A,B兩個(gè)專(zhuān)業(yè)的男女生人數(shù)進(jìn)行調(diào)查,得到如下的列聯(lián)表:
專(zhuān)業(yè)A 專(zhuān)業(yè)B 總計(jì)
女生 12 4 16
男生 38 46 84
總計(jì) 50 50 100
能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為工科院校中“性別”與“專(zhuān)業(yè)”有關(guān)系呢?
注:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.25 0.15 0.10 0.05 0.025
k0 1.323 2.072 2.706 3.841 5.024
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)列聯(lián)表中的數(shù)據(jù)求出K2,與臨界值比較,即可得到結(jié)論.
解答: 解:(Ⅰ)根據(jù)列聯(lián)表中的數(shù)據(jù)K2=
100×(12×46-4×38)2
16×84×50×50
≈4.762>3.841,
∴能在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為工科院校中“性別”與“專(zhuān)業(yè)”有關(guān)系.
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
16
-
y2
9
=1的左右焦點(diǎn),P是雙曲線右支上一點(diǎn),M是PF1的中點(diǎn),若|OM|=1,則|PF1|是(  )
A、10B、8C、6D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)任意的n∈N,都有Sn=(m+1)-man(m為常數(shù),且m>0).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比q與m函數(shù)關(guān)系為q=f(m),數(shù)列{bn}滿(mǎn)足b1=2a1,點(diǎn)(bn-1,bn)落在q=f(m)上(n≥2,n∈N,求數(shù)列{bn}的通項(xiàng)公式;
(3)在滿(mǎn)足(2)的條件下,求數(shù)列{
2n+1
bn
}的前n項(xiàng)和Tn,使Tn≤n•2n+2+λ恒成立時(shí),求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓x2+y2=1在矩陣M=
a0
0b
(a>0,b>0)對(duì)應(yīng)的變換作用下得到橢圓x2+4y2=1,求矩陣M的特征值和特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}首項(xiàng)為a1,公比為q,求:
(1)該數(shù)列的前n項(xiàng)和Sn
(2)若q≠1,證明數(shù)列{an+1}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)根據(jù)所給的獨(dú)立檢驗(yàn)臨界值表,你最多能有多少把握認(rèn)為性別與休閑方式有關(guān)系?可能用到的公式和數(shù)據(jù)K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
臨界值確定表
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,關(guān)于x的一元二次方程7x2-(a+13)x+a2-a-2=0有兩實(shí)數(shù)根x1,x2,且0<x1<1<x2<2.
(1)求a的取值范圍;
(2)比較a3與a2-a+1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
m-2x
2x+1
是奇函數(shù).
(Ⅰ)求m的值;
(Ⅱ)用定義證明f(x)在R上為減函數(shù);
(Ⅲ)若對(duì)于任意的實(shí)數(shù)t,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-x
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式af(x)≥x-
1
2
x2
在x∈(0,+∞)內(nèi)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)n∈N*,求證:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案