(本小題滿分12分)
已知函數(shù)f(x)=Asin(x+)(x∈R,>0, 0<<)的部分圖象如圖所示。
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f(x-)的單調(diào)遞增區(qū)間。
(1) f(x)=2sin(2x+)
(2) g(x)的單調(diào)遞增區(qū)間是[k-,k+],k∈z.
【解析】
試題分析:解:(1)由題設(shè)圖象知,周期T=2=,所以==2,
因?yàn)辄c(diǎn)()在函數(shù)圖象上,所以Asin(2×+)=0,即sin(+)=0。
又因?yàn)?<<,所以<+<,從而+=,即=.
又點(diǎn)(0,1)在函數(shù)圖象上,所以Asin=1,A="2."
故函數(shù)f(x)的解析式為f(x)=2sin(2x+).
(2)g(x)=2sin[2(x-+]=2sin(2x-),
由2k-≤2x-≤2k+,得k-≤x≤k+,k∈z.
所以g(x)的單調(diào)遞增區(qū)間是[k-,k+],k∈z.
考點(diǎn):三角函數(shù)的性質(zhì)
點(diǎn)評:解決該試題的關(guān)鍵是對數(shù)函數(shù)性質(zhì)的靈活運(yùn)用,能結(jié)合三角函數(shù)的性質(zhì)來求解單調(diào)區(qū)間,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com