3.集合A={x|$\frac{x+3}{2-x}$≥1},函數(shù)f(x)=log${\;}_{\frac{1}{2}}$$\frac{x-{a}^{2}-1}{x-a}$的定義域?yàn)榧螧;
(1)求集合A和B;
(2)若A?B,求實(shí)數(shù)a的取值范圍.

分析 (1)分別解不等式,即可求集合A和B;
(2)若A?B,結(jié)合(1)求實(shí)數(shù)a的取值范圍.

解答 解:(1)由$\frac{x+3}{2-x}$≥1,可得A=[-$\frac{1}{2}$,2);
由$\frac{x-{a}^{2}-1}{x-a}$>0,可得B=(-∞,a)∪(a2+1,+∞);
(2)∵A?B,
∴a>2.

點(diǎn)評(píng) 本題考查函數(shù)的定義域,考查集合的關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F是拋物線y2=2x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),且|AF|+|BF|=4,則線段AB的中點(diǎn)到拋物線準(zhǔn)線的距離為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,其中a1=1,且a2、a4、a6+2成等比數(shù)列;數(shù)列{bn}的前n項(xiàng)和為Sn,滿足2Sn+bn=1
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)如果cn=anbn,設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:Tn<Sn+$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)p、q為兩個(gè)簡單命題,若“p∧q”為真命題,則“¬p”為假命題(填“真”或“假”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.$f(x)=\left\{\begin{array}{l}{(3-a)x+1\\;x<1}\\{{a}^{x}\\;x≥1}\end{array}\right.$,滿足對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,那么a的取值范圍是( 。
A.(1,3)B.(1,2]C.[2,3)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.計(jì)算下列各題
(1)(2$\frac{3}{5}$)0+2-2×(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$-(0.01)0.5    
(2)(a-2b-3)•(-4a-1b)÷(12a-4b-2c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=x0-$\sqrt{1-2x}$的定義域是( 。
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$]C.(-∞,0)∪(0,$\frac{1}{2}$]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)F1(-c,0),F(xiàn)2(c,0)分別是橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),過F1斜率為1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(Ⅰ)求證:|AB|=$\frac{4}{3}$a;
(Ⅱ)求橢圓的離心率;
(Ⅲ)設(shè)點(diǎn)P(0,-1)滿足$({\overrightarrow{PA}+\overrightarrow{PB}})•\overrightarrow{AB}$=0,求E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.點(diǎn)P(-1,2,3)關(guān)于zOx平面對(duì)稱的點(diǎn)的坐標(biāo)是(  )
A.(1,2,3)B.(-1,-2,3)C.(-1,2,-3)D.(1,-2,-3)

查看答案和解析>>

同步練習(xí)冊(cè)答案