12.設(shè)F1(-c,0),F(xiàn)2(c,0)分別是橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),過F1斜率為1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(Ⅰ)求證:|AB|=$\frac{4}{3}$a;
(Ⅱ)求橢圓的離心率;
(Ⅲ)設(shè)點(diǎn)P(0,-1)滿足$({\overrightarrow{PA}+\overrightarrow{PB}})•\overrightarrow{AB}$=0,求E的方程.

分析 (Ⅰ)利用等差數(shù)列的性質(zhì),結(jié)合橢圓的定義,即可證得結(jié)論;
(Ⅱ)設(shè)l:x=y-c,代入橢圓C的方程,整理得(a2+b2)y2-2b2cy-b4=0(*),利用韋達(dá)定理可得$\frac{4}{3}$a=$\frac{4^{2}}{{a}^{2}+^{2}}$•a,可得b=c,再由離心率公式可得; 
(Ⅲ)由(Ⅱ)有b=c,方程(*)可化為3y2-2by-b2=0,根據(jù)$({\overrightarrow{PA}+\overrightarrow{PB}})•\overrightarrow{AB}$=0,可得|PA|=|PB|,知PM為AB的中垂線,可得kPM=-1,從而可求b=3,進(jìn)而可求橢圓C的方程.

解答 解:(Ⅰ)證明:∵|AF2|,|AB|,|BF2|成等差數(shù)列,
∴2|AB|=|AF2|+|BF2|,
由橢圓定義可得,|AB|+|AF2|+|BF2|=4a,即3|AB|=4a,
則|AB|=$\frac{4}{3}$a.
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),F(xiàn)1(-c,0),l:x=y-c,
代入橢圓C的方程,整理得(a2+b2)y2-2b2cy-b4=0,(*)
則|AB|2=(x1-x22+(y1-y22=2(y1-y22=2[(y1+y22-4y1y2]
=2[($\frac{2^{2}c}{{a}^{2}+^{2}}$)2+$\frac{4^{4}}{{a}^{2}+^{2}}$]=$\frac{2×4^{4}}{({a}^{2}+^{2})^{2}}$[c2+a2+b2]=$\frac{8^{4}}{({a}^{2}+^{2})^{2}}$•2a2,
于是有$\frac{4}{3}$a=$\frac{4^{2}}{{a}^{2}+^{2}}$•a,
化簡(jiǎn)得a=$\sqrt{2}$b,即b=c,即有e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$;
(Ⅲ)由$({\overrightarrow{PA}+\overrightarrow{PB}})•\overrightarrow{AB}$=0,可得($\overrightarrow{PA}$+$\overrightarrow{PB}$)•($\overrightarrow{PB}$-$\overrightarrow{PA}$)=0,
即有$\overrightarrow{PB}$2=$\overrightarrow{PA}$2,即|PA|=|PB|,
由(Ⅱ)有b=c,方程(*)可化為3y2-2by-b2=0,
設(shè)AB中點(diǎn)為M(x0,y0),則y0=$\frac{1}{2}$(y1+y2)=$\frac{1}{3}$b,
又M∈l,于是x0=y0-c=-$\frac{2}{3}$b,
由|PA|=|PB|,知PM為AB的中垂線,kPM=-1,
由P(0,-1),得-1=$\frac{\frac{3}+1}{-\frac{2}{3}b}$,解得b=3,a2=18,
故橢圓C的方程為$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1.

點(diǎn)評(píng) 本題重點(diǎn)考查橢圓的標(biāo)準(zhǔn)方程,考查等差數(shù)列的性質(zhì),考查兩點(diǎn)間的距離公式,解題的關(guān)鍵是利用點(diǎn)P(0,-1)在線段AB的垂直平分線上,求得斜率為-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線的方程為y=x2,直線l的方程為2x-y-4=0.P為拋物線上的一個(gè)動(dòng)點(diǎn).
(1)若點(diǎn)P到直線l的距離最短,求點(diǎn)P的坐標(biāo):
(2)若動(dòng)點(diǎn)P到x軸的距離為d1,點(diǎn)P到直線l的距離為d2,求d1+d2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.集合A={x|$\frac{x+3}{2-x}$≥1},函數(shù)f(x)=log${\;}_{\frac{1}{2}}$$\frac{x-{a}^{2}-1}{x-a}$的定義域?yàn)榧螧;
(1)求集合A和B;
(2)若A?B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=lnx-ax+$\frac{1-a}{x}$-1.
(Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出以下結(jié)論:
①函數(shù)$y=\frac{1}{x}$在其定義域內(nèi)是減函數(shù)
②函數(shù)y=x2-2x的零點(diǎn)只有兩個(gè)
③若函數(shù)f(2x)的定義域?yàn)閇1,2],則函數(shù)f(2x)的定義域?yàn)閇1,2]
④若函數(shù)f(x)=lg(x2+mx+1)(m∈R)的值域?yàn)镽,則實(shí)數(shù)m的取值范圍為(-∞,-2]∪[2,+∞),其中說法正確的序號(hào)是③④.(請(qǐng)把正確的序號(hào)全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知直線與拋物線y2=2px(p>0)交于A、B兩點(diǎn),且OA⊥OB,OD⊥AB交AB于點(diǎn)D,點(diǎn)D的坐標(biāo)為(2,1).
(1)求AB直線方程;
(2)求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC的三個(gè)內(nèi)角A,B,C滿足sin(180°-A)=$\sqrt{2}$cos(B-90°),$\sqrt{3}$cosA=-$\sqrt{2}$cos(180°+B),求角A,B,C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知c>0,設(shè)p:函數(shù)y=cx在R上遞減;q:函數(shù)f(x)=x2-cx的最小值小于$-\frac{1}{16}$.如果“p或q”為真,且“p且q”為假,則實(shí)數(shù)c的取值范圍為$(0,\frac{1}{2}]∪[1,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知{3,4,m2-3m-1}∩{2m,-3}={-3},求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案