8.求$\frac{\sqrt{3}tan70°+1}{(4co{s}^{2}70°-2)sin70°}$的值:

分析 先化切為弦,再分式的分子、分母同時乘以cos70°,把原式等價轉(zhuǎn)化為$\frac{\sqrt{3}sin70°+cos70°}{cos140°(2sin70°cos70°)}$,再利用三角函數(shù)恒等式、二倍角公式、誘導公式能求出結(jié)果.

解答 解:$\frac{\sqrt{3}tan70°+1}{(4co{s}^{2}70°-2)sin70°}$
=$\frac{\sqrt{3}•\frac{sin70°}{cos70°}+1}{2cos140°sin70°}$
=$\frac{\sqrt{3}sin70°+cos70°}{cos140°(2sin70°cos70°)}$
=$\frac{2sin(70°+30°)}{cos140°sin140°}$
=$\frac{2sin100°}{\frac{1}{2}sin280°}$
=$\frac{2sin100°}{-\frac{1}{2}sin100°}$
=-4.

點評 本題考查三角函數(shù)值的求法,是中檔題,解題時要注意化切為弦、三角函數(shù)恒等式、二倍角公式、誘導公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.△ABC中,cosB=$\frac{5}{13}$,cosC=$\frac{4}{5}$.(1)求sinA的值;(2)面積S△ABC=$\frac{33}{2}$,求BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)變量x與y線性相關(guān),且相關(guān)系數(shù)為0.875,設(shè)變量x1=10x,y1=10y,則變量y1與x1的相關(guān)系數(shù)為( 。
A.0.875B.0.125C.1D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=ln(2x)+2x-a(a∈R).若存在b∈[1,e](e是自然對數(shù)的底數(shù)),使f(f(b))=b成立,則a的取值范圍是( 。
A.[1,e+1]B.[ln2+1,e+ln2+1]C.[e,e+1]D.[ln2,e+ln2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知0≤x≤2π,試探索sinx與cosx的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.求以坐標軸為對稱軸,一條漸進線方程為x+3y=0,并且過點(3,2)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知Rt△AOB的面積為1,O為直角頂點,設(shè)向量$\overrightarrow{a}$═$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$,$\overrightarrow$=$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$,$\overrightarrow{OP}$=$\overrightarrow{a}$+2$\overrightarrow$,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知實數(shù)x,y滿足y=x2-x+2(-1≤x≤1),試求$\frac{y+3}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,半徑為R的球O中有一內(nèi)接圓柱,當圓柱的側(cè)面積最大時,球的體積與該圓柱的體積之比是( 。
A.$\frac{4}{3}$B.$\frac{4\sqrt{2}}{3}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

同步練習冊答案