已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,1)處的切線方程;
(2)若在y軸的左側(cè),函數(shù)的圖象恒在的導(dǎo)函數(shù)圖象的上方,求k的取值范圍;
(3)當(dāng)k≤-l時(shí),求函數(shù)在[k,l]上的最小值m。
(1) ; (2) ; (3)1.
解析試題分析:(1) 所以可求
從而求得切線的方程 即;
(2) 由函數(shù)得: 由題意 在上恒成立 ;即: , 令
問題轉(zhuǎn)化為求的最小值,由可求 的取值范圍.
(3) 由于,根據(jù)該函數(shù)的零點(diǎn)及的符號判斷函數(shù)的單調(diào)性并求最小值.
試題解析:
解:(1)當(dāng)時(shí) , , 1分
函數(shù)在點(diǎn)處的切線方程為 3分
(2)
即:
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/b0/d/bv6cg.png" style="vertical-align:middle;" />, 所以 4分
令,則 5分
當(dāng) 時(shí), 在 為減函數(shù), ,符合題意 6分
當(dāng) 時(shí), 在 為減函數(shù), ,符合題意 7分
當(dāng) 時(shí), 在 為減函數(shù),在為增函數(shù), 8分
綜上, .
(3) ,令 ,得 , 9分
令 ,則
在 時(shí)取最小值
所以 10分
當(dāng)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,求函數(shù)的極小值;
(2)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個(gè)不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在點(diǎn)處的切線方程為,求的值;
(2)若,函數(shù)在區(qū)間內(nèi)有唯一零點(diǎn),求的取值范圍;
(3)若對任意的,均有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在與時(shí)都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù)
(Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求的值;
(Ⅱ)記,,且.求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中.
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1)求函數(shù)在上的最小值;
(2)對一切恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對一切,都有成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com