已知函數(shù).
(1)若,求函數(shù)的極小值;
(2)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個(gè)不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?
(1)極小值為2;(2)不存在,詳見解析.
解析試題分析:(1)由a=4,得函數(shù)f(x)的解析式,求出其導(dǎo)函數(shù)以及導(dǎo)數(shù)為0的根,通過比較兩根的大小找到函數(shù)的單調(diào)區(qū)間,進(jìn)而求出f(x)的極小值;(2)若定義域內(nèi)存在三個(gè)不同的自變量的取值xi(i=1,2,3),使得f(xi)-g(xi)的值恰好都相等,設(shè)f(xi)-g(xi)=m.(i=1,2,3),則對于某一實(shí)數(shù)m,方程f(x)-g(x)=m在(0,+∞)上有三個(gè)不等的實(shí)數(shù),由此能求出在定義域內(nèi)不存在三個(gè)不同的自變量的取值xi(i=1,2,3)使得f(xi)-g(xi)的值恰好都相等.
解:(1)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/56/7/cmusw1.png" style="vertical-align:middle;" />,由已知得, 2分
則當(dāng)時(shí),在上是減函數(shù),
當(dāng)時(shí),在上是增函數(shù),
故函數(shù)的極小值為. 6分
(2)若存在,設(shè),
則對于某一實(shí)數(shù)方程在上有三個(gè)不等的實(shí)根,
設(shè),
則函數(shù)的圖象與x軸有三個(gè)不同交點(diǎn),
即在有兩個(gè)不同的零點(diǎn).9分
顯然在上至多只有一個(gè)零點(diǎn)
則函數(shù)的圖象與x軸至多有兩個(gè)不同交點(diǎn),則這樣的不存在。 13分
考點(diǎn):1.函數(shù)在某點(diǎn)取得極值的條件;2.根的存在性及根的個(gè)數(shù)判斷.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
水庫的蓄水量隨時(shí)間而變化,現(xiàn)用表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為
(1)該水庫的蓄求量小于50的時(shí)期稱為枯水期.以表示第1月份(),同一年內(nèi)哪幾個(gè)月份是枯水期?
(2)求一年內(nèi)該水庫的最大蓄水量(取計(jì)算).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求f(x)的反函數(shù)的圖象上圖象上,點(diǎn)(1,0)處的切線方程;
(2)證明: 曲線y =" f" (x)與曲線有唯一公共點(diǎn).
(3)設(shè)a<b, 比較與的大小, 并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(1) 當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2) 求函數(shù)的單調(diào)區(qū)間及在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)和是函數(shù)的兩個(gè)極值點(diǎn),其中.
(1)求的取值范圍;
(2)若為自然對數(shù)的底數(shù)),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像與直線恰有兩個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在時(shí)取得極小值.
(1)求實(shí)數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a1/9/1p3hs2.png" style="vertical-align:middle;" />?若存在,求出,的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,1)處的切線方程;
(2)若在y軸的左側(cè),函數(shù)的圖象恒在的導(dǎo)函數(shù)圖象的上方,求k的取值范圍;
(3)當(dāng)k≤-l時(shí),求函數(shù)在[k,l]上的最小值m。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com