已知函數(shù)
(1)若,求函數(shù)的極小值;
(2)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?

(1)極小值為2;(2)不存在,詳見解析.

解析試題分析:(1)由a=4,得函數(shù)f(x)的解析式,求出其導(dǎo)函數(shù)以及導(dǎo)數(shù)為0的根,通過比較兩根的大小找到函數(shù)的單調(diào)區(qū)間,進而求出f(x)的極小值;(2)若定義域內(nèi)存在三個不同的自變量的取值xi(i=1,2,3),使得f(xi)-g(xi)的值恰好都相等,設(shè)f(xi)-g(xi)=m.(i=1,2,3),則對于某一實數(shù)m,方程f(x)-g(x)=m在(0,+∞)上有三個不等的實數(shù),由此能求出在定義域內(nèi)不存在三個不同的自變量的取值xi(i=1,2,3)使得f(xi)-g(xi)的值恰好都相等.
解:(1)定義域為,由已知得,   2分
則當(dāng),上是減函數(shù),
當(dāng),上是增函數(shù), 
故函數(shù)的極小值為.                6分
(2)若存在,設(shè),
則對于某一實數(shù)方程上有三個不等的實根,
設(shè),
則函數(shù)的圖象與x軸有三個不同交點,
有兩個不同的零點.9分
顯然上至多只有一個零點
則函數(shù)的圖象與x軸至多有兩個不同交點,則這樣的不存在。       13分
考點:1.函數(shù)在某點取得極值的條件;2.根的存在性及根的個數(shù)判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

水庫的蓄水量隨時間而變化,現(xiàn)用表示時間,以月為單位,年初為起點,根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為

(1)該水庫的蓄求量小于50的時期稱為枯水期.以表示第1月份(),同一年內(nèi)哪幾個月份是枯水期?
(2)求一年內(nèi)該水庫的最大蓄水量(取計算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求f(x)的反函數(shù)的圖象上圖象上,點(1,0)處的切線方程;
(2)證明: 曲線y =" f" (x)與曲線有唯一公共點.
(3)設(shè)a<b, 比較的大小, 并說明理由.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中
(1) 當(dāng)時,求曲線在點處的切線方程;
(2) 求函數(shù)的單調(diào)區(qū)間及在上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是函數(shù)的兩個極值點,其中.
(1)求的取值范圍;
(2)若為自然對數(shù)的底數(shù)),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線
(1)試求曲線在點處的切線方程;
(2)試求與直線平行的曲線C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像與直線恰有兩個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時取得極小值.
(1)求實數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域為?若存在,求出的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)在點(1,1)處的切線方程;
(2)若在y軸的左側(cè),函數(shù)的圖象恒在的導(dǎo)函數(shù)圖象的上方,求k的取值范圍;
(3)當(dāng)k≤-l時,求函數(shù)在[k,l]上的最小值m。

查看答案和解析>>

同步練習(xí)冊答案