若橢圓過點(diǎn)(-3,2),離心率為,⊙O的圓心為原點(diǎn),直徑為橢圓的短軸,⊙M的方程為(x-8)2+(y-6)2=4,過⊙M上任一點(diǎn)P作⊙O的切線PA、PB,切點(diǎn)為A、B.

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線PA與⊙M的另一交點(diǎn)為Q,當(dāng)弦PQ最大時(shí),求直線PA的直線方程;

(Ⅲ)求的最大值與最小值.

答案:
解析:

  解:(Ⅰ)由題意得:

  所以橢圓的方程為

  (Ⅱ)由題可知當(dāng)直線PA過圓M的圓心(8,6)時(shí),弦PQ最大因?yàn)橹本PA的斜率一定存在,設(shè)直線PA的方程為:y-6=k(x-8)又因?yàn)镻A與圓O相切,所以圓心(0,0)到直線PA的距離為 可得所以直線PA的方程為:

  (Ⅲ)設(shè) 則

  則

  

  


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓過點(diǎn)P(-3,
7
2
),Q(2,
3
).
(1)求橢圓的方程;
(2)若A(0,4),B是橢圓上的任一點(diǎn),求|AB|的最大值及此時(shí)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C與橢圓C1
x2
9
+
y2
5
=1
有相同的焦點(diǎn),且橢圓過點(diǎn)(2
3
,
3
)
,右焦點(diǎn)為F,
(1)求橢圓C的方程;
(2)若直線y=
1
2
x
與橢圓C交于M、N兩點(diǎn),求△FMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)P(3,2)的直線交橢圓
x2
25
+
y2
16
=1
于A、B兩點(diǎn),若AB中點(diǎn)恰好是點(diǎn)P.求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓過點(diǎn)(-3,2),離心率為,⊙O的圓心為原點(diǎn),直徑為橢圓的短軸,⊙M的方程為,過⊙M上任一點(diǎn)P作⊙O的切線PA、PB,切點(diǎn)為A、B.(I)求橢圓的方程;(II)若直線PA與⊙M的另一交點(diǎn)為Q,當(dāng)弦PQ最大時(shí),求直線PA的直線方程;(III)求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓過點(diǎn)(-3,2),離心率為,⊙O的圓心為原點(diǎn),直徑為橢圓的短軸,⊙M的方程為,過⊙M上任一點(diǎn)P作⊙O的切線PA、PB,切點(diǎn)為A、B.

  (1)求橢圓的方程;

(2)若直線PA與⊙M的另一交點(diǎn)為Q,當(dāng)弦PQ最大時(shí),求直線PA的直線方程;

查看答案和解析>>

同步練習(xí)冊答案