20.等比數(shù)列的通項(xiàng)公式是an=2n(n∈N*),則其前n項(xiàng)和Sn=2n+1-2.

分析 利用等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.

解答 解:∵an=2n=2×2n-1,
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)與公比都為2.
∴其前n項(xiàng)和Sn=$\frac{2({2}^{n}-1)}{2-1}$=2n+1-2.
故答案為:2n+1-2.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2+ax+1,其中a∈R,且a≠0
(Ⅰ)若f(x)的最小值為-1,求a的值;
(Ⅱ)求y=|f(x)|在區(qū)間[0,|a|]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(x-m)2+2.
(1)若函數(shù)f(x)的圖象過點(diǎn)(2,2),求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)是偶函數(shù),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點(diǎn)(a,1)到直線x-y+1=0的距離為1,則a的值為( 。
A.1B.-1C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.a(chǎn)=sin$\frac{2π}{7}$,b=cos$\frac{2π}{7}$,c=tan$\frac{2π}{7}$,則( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2x+x2,則f(1)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在正方體ABCD-A1B1C1D1中,E、F分別是BC、CC1的中點(diǎn),求證:面A1B1F⊥面C1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在三棱錐D-ABC中,已知AB=2,$\overrightarrow{AC}$•$\overrightarrow{BD}$=-3,設(shè)AD=a,BC=b,CD=c,則$\frac{c^2}{ab+1}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的各項(xiàng)都大于1,且a1=2,a${\;}_{n+1}^{2}$-an+1-a${\;}_{n}^{2}$+1=0(n∈N*).
(1)求證:$\frac{n+7}{4}$≤an<an+1≤n+2;
(2)求證:$\frac{1}{2{a}_{1}^{2}-3}$+$\frac{1}{2{a}_{2}^{2}-3}$+$\frac{1}{2{a}_{3}^{2}-3}$+…+$\frac{1}{2{a}_{n}^{3}-3}$<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案