分析 (1)由an>1,結(jié)合${{a}_{n+1}}^{2}-{a}_{n+1}-{{a}_{n}}^{2}+1=0$,可得an+1>an;作差放縮可得an+1-an<1,利用迭代法證得an+1≤n+2;最后再由作差放縮得到${a}_{n+1}-{a}_{n}>\frac{1}{4}$,進一步得到${a}_{n}>2+\frac{n-1}{4}=\frac{n+7}{4}$;
(2)由${{a}_{n+1}}^{2}-{{a}_{n}}^{2}={a}_{n+1}-1≥\frac{n+8}{4}-1=\frac{n+4}{4}$,得${{a}_{n+1}}^{2}>\frac{n(n+4+5)}{8}+{{a}_{1}}^{2}=\frac{{n}^{2}+9n+32}{8}$,可得$2{{a}_{n}}^{2}-3≥\frac{{n}^{2}+7n+12}{4}=\frac{(n+3)(n+4)}{4}$,然后利用裂項相消法證得答案.
解答 證明:(1)∵an>1,
由${{a}_{n+1}}^{2}-{a}_{n+1}-{{a}_{n}}^{2}+1=0$,
得${{a}_{n+1}}^{2}-{{a}_{n}}^{2}={a}_{n+1}-1>0$,即an+1>an,
∵${a}_{n+1}-{a}_{n}=\frac{{a}_{n+1}-1}{{a}_{n+1}+{a}_{n}}<1$,
∴an+1=(an+1-an)+(an-an-1)+…+(a2-a1)+a1≤n+2,
${a}_{n+1}-{a}_{n}=\frac{{a}_{n+1}-1}{{a}_{n+1}+{a}_{n}}>\frac{{a}_{n+1}-1}{2{a}_{n+1}}=\frac{1}{2}-\frac{1}{2{a}_{n+1}}>\frac{1}{4}$,
∴${a}_{n}>2+\frac{n-1}{4}=\frac{n+7}{4}$;
(2)由${{a}_{n+1}}^{2}-{{a}_{n}}^{2}={a}_{n+1}-1≥\frac{n+8}{4}-1=\frac{n+4}{4}$,
∴${({a}_{n+1}}^{2}-{{a}_{n}}^{2})+({{a}_{n}}^{2}-{{a}_{n-1}}^{2})+…+({{a}_{2}}^{2}-{{a}_{1}}^{2})$
$>\frac{1}{4}[n+(n-1)+…+2+1]+n=\frac{n(n+1)}{8}+n$,
∴${{a}_{n+1}}^{2}>\frac{{n}^{2}+9n}{8}+{{a}_{1}}^{2}=\frac{{n}^{2}+9n+32}{8}$,
即${{a}_{n}}^{2}≥\frac{{n}^{2}+7n+24}{8}$,
$2{{a}_{n}}^{2}-3≥\frac{{n}^{2}+7n+12}{4}=\frac{(n+3)(n+4)}{4}$,
∴$\frac{1}{2{{a}_{1}}^{2}-3}+\frac{1}{2{{a}_{2}}^{2}-3}+…+\frac{1}{2{{a}_{n}}^{2}-3}$$≤4(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+…+\frac{1}{n+3}-\frac{1}{n+4})$<1.
點評 本題考查數(shù)列遞推式,考查了利用放縮法證明數(shù)列不等式,考查學生的邏輯思維能力和推理運算能力,屬難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -7 | B. | 7 | C. | $-\frac{1}{7}$ | D. | $\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 671 | B. | 672 | C. | 673 | D. | 674 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com