已知
a
是單位向量,|
b
|=
6
,且(2
a
+
b
)•(
b
-
a
)=4-
3
,則
a
b
的夾角為( 。
A、45°B、60°
C、120°D、135°
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:求出數(shù)量積
a
b
,利用數(shù)量積的公式,即可求出
a
b
的夾角.
解答: 解:∵
a
是單位向量,∴|
a
|=1,
∵|
b
|=
6
,且(2
a
+
b
)•(
b
-
a
)=4-
3
,
a
b
+|
b
|2-2|
a
|2=4-
3
,
a
b
+6-2=4-
3
,即
a
b
=-
3

則cos<
a
,
b
>=
a
b
|
a
||
b
|
=
-
3
6
=-
2
2
,
則<
a
,
b
>=135°,
故選:D.
點(diǎn)評(píng):本題主要考查平面向量數(shù)量積的應(yīng)用,根據(jù)數(shù)量積的公式是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin(65°-x)cos(x-20°)-cos(65°-x)sin(20°-x)的值為( 。
A、
2
B、
2
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
|x|-1     (|x|>1)
1-x2
    (|x|≤1)
關(guān)于x的方程f(x)=a(a∈R)的解的個(gè)數(shù)不可能是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式5x2-bx+c<0 的解集為{x|-1<x<3},則b+c的值為( 。
A、5B、-5C、-25D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{xn}對(duì)于任意m,r∈N+,有xm+r=xm+xr,又x2=-6,則x10=( 。
A、21B、-30
C、34D、-43

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2sin(x+φ)的圖象為C,則以下判斷中,正確的是( 。
A、過(guò)點(diǎn)(
π
3
,2)的C唯一
B、過(guò)點(diǎn)(-
π
6
,0)的C唯一
C、在長(zhǎng)度為2π的閉區(qū)間上恰有一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn)
D、圖象C關(guān)于原點(diǎn)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法錯(cuò)誤的是( 。
A、如果命題“?p”與命題“p或q”都是真命題,那么命題q一定是真命題.
B、命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
C、命題p:?x0∈R,x02-2x0+4<0,則?p:?x∈R,x2-2x+4≥0
D、特稱命題“?x∈R,使-2x2+x-4=0”是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2x3-12x在區(qū)間[-1,3]上的最大值和最小值分別為( 。
A、18,-8
2
B、54,-12
C、8
2
,-8
2
D、10,-8
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
=(1,2),
b
=(x,1),
(1)當(dāng)
a
+2
b
與2
a
-
b
平行時(shí),求x;
(2)當(dāng)
a
+2
b
與2
a
-
b
垂直時(shí),求x.

查看答案和解析>>

同步練習(xí)冊(cè)答案