設(shè)函數(shù)f(x)=|2x-1|的定義域和值域都是[a,b](b>a),則a+b=
 
分析:先通過函數(shù)的值域求出a、b的范圍,再根據(jù)函數(shù)f(x)在[0,+∞)上是單調(diào)性建立方程組,解之即可.
解答:解:因?yàn)閒(x)=|2x-1|的值域?yàn)閇a,b],
所以b>a≥0,
而函數(shù)f(x)=|2x-1|在[0,+∞)上是單調(diào)遞增函數(shù),
因此應(yīng)有
|2a-1|=a
|2b-1|=b
,解得
a=0
b=1

所以有a+b=1.
故答案為1
點(diǎn)評(píng):本題主要考查了指數(shù)函數(shù)的定義域和值域,以及含絕對(duì)值函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對(duì)于給定的正數(shù)k,定義函數(shù)fk(x)=
f(x),f(x)≤k
k,f(x)>k
.設(shè)函數(shù)f(x)=2+x-ex,若對(duì)任意的x∈(-∞,+∞)恒有fk(x)=f(x),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1).
(1)當(dāng)
a
b
時(shí),求cos2x-sin2x的值;
(2)設(shè)函數(shù)f(x)=2(
a
+
b
)•
b
,求f(x)的值域.(其中x∈(0,
24
))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2|x+1-|x-1|,則滿足f(x)≥2
2
的x取值范圍為
[
3
4
,+∞)
[
3
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-x -1  x≤0
x
1
2
x>0
,則f[f(-1)]=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2,x<1
x-1
,x≥1
 則f(f(f(1)))=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案