1.已知圓x2+y2=4上有且只有四個點到直線12x-5y+m=0的距離為1,則實數(shù)m的取值范圍是(-13,13).

分析 求出圓心,求出半徑,圓心到直線的距離小于半徑和1的差即可.

解答 解:圓半徑為2,
圓心(0,0)到直線12x-5y+c=0的距離小于1,即$\frac{|m|}{\sqrt{1{2}^{2}+{5}^{2}}}$=$\frac{|m|}{13}$<1,
則m的取值范圍是(-13,13).
故答案為:(-13,13)

點評 此題考查了圓與直線的位置關系,圓心到直線的距離小于半徑和1的差,此時4個,等于3個,大于這個差小于半徑和1的和是2個.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=ex(alnx+$\frac{2}{x}$+b),其中a,b∈R,e≈2.71828自然對數(shù)的底數(shù).
(1)若曲線y=f(x)在x=1的切線方程為y=e(x-1),求實數(shù)a,b的值;
(2)①若a=-2時,函數(shù)y=f(x)既有極大值,又有極小值,求實數(shù)b的取值范圍;
②若a=2,b≥-2,若f(x)≥kx對一切正實數(shù)x恒成立,求實數(shù)k的最大值(用b表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設點C(2a+1,a+1,2)在點P(2,0,0),A(1,-3,2),B(8,-1,4)確定的平面上,則a的值為( 。
A.8B.16C.22D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.集合M滿足:{x|1≤x≤3,x∈N}?M?{y|0≤y2<16,y∈N*},滿足條件的集合M的個數(shù)為( 。
A.7B.1C.2D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知正四面體ABCD的棱長為2,若動點P從底面△BCD的BC的中點出發(fā),沿著正四面體的側面運動到D點停止,則動點P經過的最短路徑長為(  )
A.3B.$\sqrt{7}$C.2$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知橢圓方程為$\frac{x^2}{16}$+$\frac{y^2}{9}$=1,橢圓上的點M到該橢圓的一個焦點F1的距離為2,N為MF1的中點,O是橢圓的中心,那么線段ON的長度為( 。
A.2B.3C.4D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2},π})$),sinβ=-$\frac{12}{13}$,β是三象限角,求cos(β-α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.給出如圖的程序框圖,程序輸出的結果是( 。
A.55B.56C.72D.46

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E,F(xiàn)分別是AB,BC的中點.
(1)求證:AB⊥平面CDE;
(2)求證:EF∥平面ACD.

查看答案和解析>>

同步練習冊答案