函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x+2x-1,則f(-1)=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的性質(zhì),求f(1)的值即可.
解答: 解:∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴f(-1)=-f(1),
∵當x≥0時,f(x)=2x+2x-1,
∴f(1)=2+2-1=3,
即f(-1)=-f(1)=-3,
故答案為:-3.
點評:本題主要考查函數(shù)值的計算,根據(jù)函數(shù)的奇偶性的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)計算lg8+3lg5-(
1
9
-1+(
27
8
 
1
3
的值;
(2)計算sin
25π
6
+tan
4
-cos
19π
3
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2+ax-2ay-2=0的半徑的最小值是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α-β)cosα-cos(α-β)sinα=
3
5
,那么cos2β的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

扇形圓心角為2弧度,弧長為8cm,則扇形半徑為
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)滿足:對任意實數(shù)a,b都有f(a+b)=f(a)f(b),且f(1)=1,則
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+…+
f(2011)
f(2010)
+
f(2012)
f(2011)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x2-kx-8在[2,4]上單調(diào)遞增,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時f(x)=x(1+x),求f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax(a>0且a≠1)在區(qū)間[0,2]上的最大值與最小值的和為3,則a=
 

查看答案和解析>>

同步練習(xí)冊答案