【題目】公交車的數(shù)量太多容易造成資源浪費(fèi),太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機(jī)調(diào)查了50名乘客,經(jīng)整理,他們候車時間(單位:)的莖葉圖如下:

(Ⅰ)將候車時間分為八組,作出相應(yīng)的頻率分布直方圖;

(Ⅱ)若公交公司將2路車發(fā)車時間調(diào)整為每隔15發(fā)一趟車,那么上述樣本點(diǎn)將發(fā)生變化(例如候車時間為9的不變,候車時間為17的變?yōu)?/span>2),現(xiàn)從2路車的乘客中任取5人,設(shè)其中候車時間不超過10的乘客人數(shù)為,求的數(shù)學(xué)期望.

【答案】(Ⅰ)見解析;(Ⅱ)

【解析】試題分析:

(Ⅰ)根據(jù)莖葉圖可得落在各組內(nèi)的頻數(shù),求得頻率后可得的值,根據(jù)所得數(shù)據(jù)可得頻率分布直方圖.(Ⅱ)由題意得候車時間中不超過10分鐘的數(shù)據(jù)共有34個,根據(jù)古典概型概率公式可得所求概率為0.68.

試題解析:

(Ⅰ)由莖葉圖可得落入分組區(qū)間內(nèi)的頻數(shù)依次為4、4、10、12、8、6、4、2,

于是可得各組分組區(qū)間相應(yīng)的的值依次為0.02、0.02、0.05、0.06、0.04、0.03、0.02、

0.01,

依此畫出頻率分布直方圖如下圖所示.

(Ⅱ)調(diào)整為間隔15分鐘發(fā)一趟車之后,候車時間原本不超過10分鐘的數(shù)據(jù)就有14個,發(fā)生了變化的候車時間中不超過10分鐘的數(shù)據(jù)又增加了20個,共計34個.

所以候車時間不超過10分鐘的頻率為,

由此估計一名乘客候車時間不超過10分鐘的概率為0.68

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)求函數(shù)的解析式及其定義域;

2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某種藥物,用小白鼠進(jìn)行試驗(yàn),發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時間的關(guān)系因使用方式的不同而不同。若使用注射方式給藥,則在注射后的3小時內(nèi),藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:現(xiàn)對小白鼠同時進(jìn)行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾。

1)若a=1,求3小時內(nèi),該小白鼠何時血液中藥物的濃度最高,并求出最大值?

2)若使小白鼠在用藥后3小時內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)一段圖象如圖所示。

(1)求出函數(shù)的解析式;

(2) 函數(shù)的圖像可由函數(shù)y=sinx的圖像經(jīng)過怎樣的平移和伸縮變換而得到?

(3) 求出的單調(diào)遞增區(qū)間;

(4) 指出當(dāng)取得最小值時的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的右焦點(diǎn)為,為圓與橢圓的一個公共點(diǎn),.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)如圖,過作直線與橢圓交于,兩點(diǎn),點(diǎn)為點(diǎn)關(guān)于軸的對稱點(diǎn).

(1)求證:;

(2)試問過,的直線是否過定點(diǎn)?若是,請求出該定點(diǎn);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加元時,未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi).

1)當(dāng)每輛車的月租金定為元時,能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費(fèi)用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集,)具有性質(zhì):對任意、),兩數(shù)中至少有一個屬于集合,現(xiàn)給出以下四個命題:①數(shù)集具有性質(zhì);②數(shù)集具有性質(zhì);③若數(shù)集具有性質(zhì),則;④若數(shù)集)具有性質(zhì),則;其中真命題有________(填寫序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某零售公司從1月至6月的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下:

月份

1

2

3

4

5

6

銷售量/萬件

6

8

12

13

11

10

利潤/萬元

12

16

26

29

25

22

(1)根據(jù)2月至5月4個月的統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程.(的結(jié)果用分?jǐn)?shù)表示);

(2)若由回歸直線方程得到的估計數(shù)據(jù)與實(shí)際數(shù)據(jù)的誤差均不超過1萬元,則認(rèn)為得到的回歸直線方程是有效的.試用1月和6月的數(shù)據(jù)估計所得的回歸直線方程是否有效?

參考公式:,.

參考數(shù)據(jù):,.

查看答案和解析>>

同步練習(xí)冊答案