若n∈N*,求證:<22n

答案:
解析:

  證明:∵22n=(1+1)2n,

  又22n=(1+1)2n=2++…+ =2n·,

  ∴.∴


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)一模)若數(shù)列{bn}滿足:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí).
則{cn}是公差為8的準(zhǔn)等差數(shù)列.
(1)求上述準(zhǔn)等差數(shù)列{cn}的第8項(xiàng)c8、第9項(xiàng)c9以及前9項(xiàng)的和T9
(2)設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項(xiàng)公式;
(3)設(shè)(2)中的數(shù)列{an}的前n項(xiàng)和為Sn,若S63>2012,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•孝感模擬)已知函數(shù)f(x)=|x-a|-lnx(a∈R)
(I)若a=1,求f(x)的單調(diào)區(qū)間及f(x)的最小值;
(II)若a∈R,試討論f(x)的單調(diào)區(qū)間;
(III)若n∈N+,求證:1+
1
2
+
1
3
+…+
1
n
1
2
ln
(n+1)(n+2)
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:孝感模擬 題型:解答題

已知函數(shù)f(x)=|x-a|-lnx(a∈R)
(I)若a=1,求f(x)的單調(diào)區(qū)間及f(x)的最小值;
(II)若a∈R,試討論f(x)的單調(diào)區(qū)間;
(III)若n∈N+,求證:1+
1
2
+
1
3
+…+
1
n
1
2
ln
(n+1)(n+2)
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若n∈N*,求證:<22n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖北省孝感市高三第一次統(tǒng)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=|x-a|-lnx(a∈R)
(I)若a=1,求f(x)的單調(diào)區(qū)間及f(x)的最小值;
(II)若a∈R,試討論f(x)的單調(diào)區(qū)間;
(III)若n∈N+,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案