已知直線l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線l且與圓C相切的直線l′的方程;
(2)過直線l上的動點(diǎn)P作圓C的一條切線,設(shè)切點(diǎn)為T,求|PT|的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知以點(diǎn)C(1,﹣2)為圓心的圓與直線x+y﹣1=0相切.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)求過圓內(nèi)一點(diǎn)P(2,﹣)的最短弦所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C過原點(diǎn)且與相切,且圓心C在直線上.
(1)求圓的方程;(2)過點(diǎn)的直線l與圓C相交于A,B兩點(diǎn), 且, 求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G.求證:
(1)圓心O在直線AD上;
(2)點(diǎn)C是線段GD的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實(shí)數(shù).
(1)求直線y=ax+b不經(jīng)過第四象限的概率:
(2)求直線y=ax+b與圓有公共點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動圓()
(1)當(dāng)時,求經(jīng)過原點(diǎn)且與圓相切的直線的方程;
(2)若圓恰在圓的內(nèi)部,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點(diǎn),為坐標(biāo)原點(diǎn),過點(diǎn)作的平行線交曲線于兩個不同的點(diǎn).
(1)求曲線的方程;
(2)試探究和的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓O1與圓O2的半徑都是1,O1O2=4,過動點(diǎn)P分別作圓O1、圓O2的切線PM、PN(M、N分別為切點(diǎn)),使得PM=PN,試建立適當(dāng)?shù)淖鴺?biāo)系,并求動點(diǎn)P的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com