已知實數(shù)
(1)求直線y=ax+b不經(jīng)過第四象限的概率:
(2)求直線y=ax+b與圓有公共點的概率.

(1);(2).

解析試題分析:(1)因為實數(shù),所以由構(gòu)成的實數(shù)對總共有16種,又直線不過第四象限,即必須滿足,此時由構(gòu)成的實數(shù)對總共有4種,故所求概率為;(2)由圓方程知圓心坐標(biāo)為,半徑為1,又直線與圓有公共點,即圓心到直線的距離不大于半徑1,根據(jù)點到直線距離公式得,整理得,經(jīng)檢驗滿足此式的實數(shù)對共有12種,故所求概率為.
(1)由于實數(shù)的所有取值為:,,,,,,,,,,,共16種.  2分
設(shè)“直線不經(jīng)過第四象限”為事件,若直線不經(jīng)過第四象限,則必須滿足,.
則事件包含4個基本事件:,,.    4分
,直線不經(jīng)過第四象限的概率為.    6分
(2)設(shè)“直線與圓有公共點”為事件,
則需滿足,即.     9分
所以事件包含12個基本事件:,,,,,,,,.    11分
,所以直線與圓有公共點的概率為.    13分
考點:1.古典概型;2.直線與圓.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1、2、3、4、5、6)先后拋兩次,將得到的點數(shù)分別記為a,b.
(1)求滿足條件a+b≥9的概率;
(2)求直線ax+by+5=0與x2+y2=1相切的概率
(3)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,(其中為參數(shù),),在極坐標(biāo)系(以坐標(biāo)原點為極點,以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為
(1)把曲線的方程化為直角坐標(biāo)方程;
(2)若曲線上恰有三個點到曲線的距離為,求曲線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線l且與圓C相切的直線l′的方程;
(2)過直線l上的動點P作圓C的一條切線,設(shè)切點為T,求|PT|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓
(1)當(dāng)時,求經(jīng)過原點且與圓相切的直線的方程;
(2)若圓與圓內(nèi)切,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點,直線.設(shè)圓的半徑為,圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C:
(1)當(dāng)為何值時,曲線C表示圓;
(2)在(1)的條件下,若曲線C與直線交于M、N兩點,且,求的值.
(3)在(1)的條件下,設(shè)直線與圓交于兩點,是否存在實數(shù),使得以為直徑的圓過原點,若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知直線lyx,圓C1的圓心為(3,0),且經(jīng)過點A(4,1).
 
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對稱,點B、D分別為圓C1、C2上任意一點,求|BD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若過點有公共點,則直線l的斜率的取值范圍為________

查看答案和解析>>

同步練習(xí)冊答案