【題目】如圖所示,已知拋物線C1:x2=2py的焦點在拋物線C2,點P是拋物線C1上的動點.

(1)求拋物線C1的方程及其準線方程;

(2)過點P作拋物線C2的兩條切線,M,N分別為兩個切點,設(shè)點P到直線MN的距離為d,求d的最小值.

【答案】(1),;(2)

【解析】

(1)由題意拋物線C1的焦點為拋物線C2的頂點(0,1),由此算出p=2,從而得到拋物線C1的方程,得到C1的準線方程;(2)設(shè)P(2t,t2),用直線方程的點斜式列出直線PM方程并將點P坐標代入,化簡可得 同理得到.然后利用一元二次方程根與系數(shù)的關(guān)系,算出x1+x2=4t,x1x2=2t2﹣2,將直線MN的兩點式方程化簡并代入前面算出的式可得MN的方程為y=2tx+2﹣t2.最后利用點到直線的距離公式列式,采用換元法并且運用基本不等式求最值,即可算出P到直線MN的距離d的最小值為

(1)C1的焦點為,所以=0+1,得p=2.C1的方程為x2=4y,其準線方程為y=-1.

(2)設(shè)P(2t,t2),M,N,則PM的方程為y-=x1(x-x1),將P點坐標代入得t2=2tx1x+1,即x-4tx1+2t2-2=0,同理得x-4tx2+2t2-2=0.MN的方程為y- (x-x1),即y- (x1+x2)(x-x1).

x1+x2=4t, x-2tx1=1-t2,所以直線MN的方程為y=2tx+2-t2.

于是d==2.

令s=1+4t2(s≥1),則d= (當(dāng)且僅當(dāng)s=3時取等號),

所以d的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)k是一個正整數(shù),(1+ k的展開式中第四項的系數(shù)為 ,記函數(shù)y=x2與y=kx的圖象所圍成的陰影部分為S,任取x∈[0,4],y∈[0,16],則點(x,y)恰好落在陰影區(qū)域內(nèi)的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,圓C的極坐標方程為ρ=4cosθ,直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標方程及弦AB的長;
(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若,cos ∠ABF=,則C的離心率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從邊長為2a的正方形鐵片的四個角各截去一個邊長為x的正方形,然后折成一個無蓋的長方體盒子,要求長方體的高度x與底面正方形邊長的比不超過正數(shù)t.

(1)把鐵盒的容積V表示為關(guān)于x的函數(shù),并指出其定義域.

(2)當(dāng)x為何值時,容積V有最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=3sinx﹣πx,命題p:x∈(0, ),f(x)<0,則(
A.p是假命題,¬p:?x∈(0, ),f(x)≥0
B.p是假命題,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命題,¬p:?x∈(0, ),f(x)>0
D.p是真命題,¬p:?x0∈(0, ),f(x0)≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln x-mx+n,m,n∈R.

(1)若函數(shù)f(x)的圖像在點(1,f(1))處的切線為y=2x-1,求m,n的值;

(2)求函數(shù)f(x)的單調(diào)區(qū)間;

(3)若n=0,不等式f(x)+m<0對x∈(1,+∞)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx+2在x=2處取得極值-14.

(1)求a,b的值;

(2)若f(x)≥kx在上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= 恰有2個零點,則實數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案