7.如果a和b是異面直線,直線a∥c,那么直線b與c的位置關(guān)系是(  )
A.相交B.異面C.平行D.相交或異面

分析 兩條直線的位置關(guān)系有三種:相交,平行,異面.由于a,b是兩條異面直線,直線c∥a則c有可能與b相交且與a平行,但是c不可能與b平行,要說明這一點采用反證比較簡單.

解答 解:∵a,b是兩條異面直線,直線c∥a
∴過b任一點可作與a平行的直線c,此時c與b相交.另外c與b不可能平行理由如下:
若c∥b則由c∥a可得到a∥b這與a,b是兩條異面直線矛盾,故c與b異面.
故選:D.

點評 此題考查了空間中兩直線的位置關(guān)系:相交,平行,異面.做題中我們可采用逐個驗證再結(jié)合反證法的使用即可達到目的,這也不失為常用的解題方法!

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)定義域為R的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若關(guān)于x的方程f2(x)+bf(x)+c=0有5個不同的實數(shù)解,則b+c值為( 。
A.0B.1C.-1D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$的定義域為[-3,3].
(1)判斷函數(shù)f(x)的單調(diào)性,并用定義給出證明;
(2)若實數(shù)m滿足f(m-1)<f(1-2m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=$\frac{1+2lnx}{{x}^{2}}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)令g(x)=ax2-2lnx,則g(x)=1時有兩個不同的根,求a的取值范圍;
(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)-f(x2)|≥k|lnx1-lnx2|成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}是等差數(shù)列,公差d不為0,Sn是其前n項和,若a3,a4,a8成等比數(shù)列,則下列四個結(jié)論
①a1d<0;②dS4<0;③S8=-20S4;④等比數(shù)列a3,a4,a8的公比為4.其中正確的是①②④.(請把正確結(jié)論的序號全部填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列{an}中,a3=9,a5=17,記數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前n項和為Sn,若S2n+1-Sn≤$\frac{m}{15},({m∈Z})$,對任意的n∈N*成立,則整數(shù)m的最小值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個人打靶時連續(xù)射擊三次,與事件“至多有兩次中靶”互斥的事件是( 。
A.至少有兩次中靶B.三次都中靶C.只有一次中靶D.三次都不中靶

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}為等比數(shù)列,其前n項和為Sn,且S1,S2的等差中項為S3,若8(a1+a3)=-5.
(1)求數(shù)列[an]的通項公式;
(2)記Rn=|$\frac{1}{a_1}|+|\frac{2}{a_2}|+|\frac{3}{a_3}|+…+|\frac{n}{a_n}$|,對于任意的n≥2,n∈N*,不等式m(Rn-n-1)≥(n-1)2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)a,b∈R,集合{a,1}={0,a+b},則a-b=-1.

查看答案和解析>>

同步練習(xí)冊答案