【題目】銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,向量 , ,且
(1)求角B的大;
(2)若sinAsinC=sin2B,求a﹣c的值.

【答案】
(1)解:∵ , ,且

=2sinBcosB﹣ cos2B=﹣sin(2B+ )=0,

又因?yàn)殇J角三角形,所以


(2)解:∵sinAsinC=sin2B,由正弦定理可得:ac=b2,

由余弦定理可得:b2=a2+c2﹣2accosB,

∴ac=a2+c2﹣2accos ,化為(a﹣c)2=0,解得a﹣c=0


【解析】(1)由 , ,且 ,解得﹣sin(2B+ )=0,可得B.(2)sinAsinC=sin2B,由正弦定理可得:ac=b2 , 再利用余弦定理即可得出.
【考點(diǎn)精析】本題主要考查了余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐A﹣BCDE中,底面BCDE為平行四邊形,平面ABE⊥平面BCDE,AB=AE,DB=DE,∠BAE=∠BDE=90°
(1)求異面直線AB與DE所成角的大。
(2)求二面角B﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax3+bx2+c的圖象經(jīng)過點(diǎn)(0,1),且在x=1處的切線方程是y=x.
(1)求y=f(x)的解析式;
(2)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,a∈R.
(1)求f(x)的解析式;
(2)解關(guān)于x的方程f(x)=(a﹣1)4x
(3)設(shè)h(x)=2﹣xf(x), 時(shí),對(duì)任意x1 , x2∈[﹣1,1]總有 成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱 中,底面 是邊長(zhǎng)為2的等邊三角形, 的中點(diǎn).

(1)求證: 平面
(2)若四邊形 是正方形,且 , 求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中, 底面 ,

(Ⅰ)求證:平面 平面 ;
(Ⅱ)試在棱 上確定一點(diǎn) ,使截面 把該幾何體分成的兩部分 的體積比為 ;
(Ⅲ)在(Ⅱ)的條件下,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱 中, 底面 ,且 為等邊三角形, , 的中點(diǎn).

(1)求證:直線 平面
(2)求證:平面 平面 ;
(3)求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,F(xiàn)1、F2是雙曲線 =1(a>0)的左、右焦點(diǎn),過F1的直線l與雙曲線交于點(diǎn)A、B,若△ABF2為等邊三角形,則△BF1F2的面積為(
A.8
B.8
C.8
D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案