分析 (1)根據函數(shù)的對稱性即可求出g(x),即可得到f(g(x))=x,解得即可.
(2)先求出函數(shù)的解析式,得到$\left\{\begin{array}{l}{{m}^{2}=2m}\\{{n}^{2}=2n}\end{array}\right.$,解得m=0,n=2,
(3)由x∈[-1,1]可得t∈[$\frac{1}{2}$,2],結合二次函數(shù)的圖象和性質,對a進行分類討論,即可得到函數(shù)y=f2(x)-2af(x)+3的最小值h(a)的表達式.
解答 解:(1)∵函數(shù)f(x)=($\frac{1}{2}$)x的圖象與函數(shù)y=g(x)的圖象關于直線y=x對稱,
∴g(x)=$lo{g}_{\frac{1}{2}}x$,
∵f(g(x))=6-x2,
∴$(\frac{1}{2})^{lo{g}_{\frac{1}{2}}x}$=6-x2=x,
即x2+x-6=0,
解得x=2或x=-3(舍去),
故x=2,
(2)y=g(f(x2))=$lo{g}_{\frac{1}{2}}(\frac{1}{{2}^{{x}^{2}}})$=x2,
∵定義域為[m,n](m≥0),值域為[2m,2n],
$\left\{\begin{array}{l}{{m}^{2}=2m}\\{{n}^{2}=2n}\end{array}\right.$,
解得m=0,n=2,
(3)令t=($\frac{1}{2}$)x,
∵x∈[-1,1],
∴t∈[$\frac{1}{2}$,2],
則y=[f(x)]2-2af(x)+3等價為y=m(t)=t2-2at+3,
對稱軸為t=a,
當a<$\frac{1}{2}$時,函數(shù)的最小值為h(a)=m($\frac{1}{2}$)=$\frac{13}{4}$-a;
當$\frac{1}{2}$≤a≤2時,函數(shù)的最小值為h(a)=m(a)=3-a2;
當a>2時,函數(shù)的最小值為h(a)=m(2)=7-4a;
故h(a)=$\left\{\begin{array}{l}{7-4a,a>2}\\{-{a}^{2}+3,\frac{1}{2}≤a≤2}\\{-a+\frac{13}{4},a<\frac{1}{2}}\end{array}\right.$
點評 本題考查的知識點是指數(shù)函數(shù)的圖象和性質,二次函數(shù)的圖象和性質,分段函數(shù),是函數(shù)圖象和性質的綜合應用,難度中檔.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 恒為偶數(shù) | B. | 恒為奇數(shù) | C. | 不超過2017 | D. | 可超過2017 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-7]∪[1,+∞) | B. | [-7,1] | C. | (-∞,-1]∪[7,+∞) | D. | [-1,7] |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com