【題目】某游戲棋盤上標(biāo)有第、、、、站,棋子開始位于第站,選手拋擲均勻硬幣進行游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第站或第站時,游戲結(jié)束.設(shè)游戲過程中棋子出現(xiàn)在第站的概率為.
(1)當(dāng)游戲開始時,若拋擲均勻硬幣次后,求棋子所走站數(shù)之和的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請分析這個游戲是否公平.
【答案】(1)分布列見解析,數(shù)學(xué)期望;(2)見解析;(3)游戲不公平.
【解析】
(1)由題意得出隨機變量的可能取值有、、、,求出相應(yīng)的概率,由此可得出隨機變量的分布列,并計算出隨機變量的數(shù)學(xué)期望;
(2)棋子要到第站,分兩種情況討論:一是由第站跳站得到,二是由第站跳站得到,可得出,變形后可得出結(jié)論;
(3)根據(jù)(2)中的的遞推公式得出和的大小關(guān)系,從而得出結(jié)論.
(1)由題意可知,隨機變量的可能取值有、、、,
,,
,.
所以,隨機變量的分布列如下表所示:
所以,;
(2)依題意,當(dāng)時,棋子要到第站,有兩種情況:
由第站跳站得到,其概率為;
可以由第站跳站得到,其概率為.
所以,.
同時減去得;
(3)依照(2)的分析,棋子落到第站的概率為,
由于若跳到第站時,自動停止游戲,故有.
所以,即最終棋子落在第站的概率大于落在第站的概率,游戲不公平.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,B、E、F為山腳兩側(cè)共線的三點,在山頂A處測得這三點的俯角分別為、、,計劃沿直線BF開通穿山隧道,現(xiàn)已測得BC、DE、EF三段線段的長度分別為3、1、2.
(1)求出線段AE的長度;
(2)求出隧道CD的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級有400名學(xué)生參加某項體育測試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中抽取了100名學(xué)生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:,整理得到如下頻率分布直方圖:
(1)若該樣本中男生有55人,試估計該學(xué)校高三年級女生總?cè)藬?shù);
(2)若規(guī)定小于60分為“不及格”,從該學(xué)校高三年級學(xué)生中隨機抽取一人,估計該學(xué)生不及格的概率;
(3)若規(guī)定分數(shù)在為“良好”,為“優(yōu)秀”.用頻率估計概率,從該校高三年級隨機抽取三人,記該項測試分數(shù)為“良好”或“優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(為參數(shù)),將曲線上所有點橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,得到曲線,過點且傾斜角為的直線與曲線交于、兩點.
(1)求曲線的參數(shù)方程和的取值范圍;
(2)求中點的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝加工廠為了提高市場競爭力,對其中一臺生產(chǎn)設(shè)備提出了甲、乙兩個改進方案:甲方案是引進一臺新的生產(chǎn)設(shè)備,需一次性投資1000萬元,年生產(chǎn)能力為30萬件;乙方案是將原來的設(shè)備進行升級改造,需一次性投入700萬元,年生產(chǎn)能力為20萬件.根據(jù)市場調(diào)查與預(yù)測,該產(chǎn)品的年銷售量的頻率分布直方圖如圖所示,無論是引進新生產(chǎn)設(shè)備還是改造原有的生產(chǎn)設(shè)備,設(shè)備的使用年限均為6年,該產(chǎn)品的銷售利潤為15元/件(不含一次性設(shè)備改進投資費用).
(1)根據(jù)年銷售量的頻率分布直方圖,估算年銷量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)將年銷售量落入各組的頻率視為概率,各組的年銷售量用該組區(qū)間的中點值作年銷量的估計值,并假設(shè)每年的銷售量相互獨立.
①根據(jù)頻率分布直方圖估計年銷售利潤不低于270萬元的概率:
②若以該生產(chǎn)設(shè)備6年的凈利潤的期望值作為決策的依據(jù),試判斷該服裝廠應(yīng)選擇哪個方案.(6年的凈利潤=6年銷售利潤-設(shè)備改進投資費用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在的偶函數(shù),且.當(dāng)時,,若方程有300個不同的實數(shù)根,則實數(shù)m的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車因綠色、環(huán)保、健康的出行方式,在國內(nèi)得到迅速推廣.最近,某機構(gòu)在某地區(qū)隨機采訪了10名男士和10名女士,結(jié)果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.
(1)從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車出行”的概率;
(2)從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車出行”的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)(其中a是實數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若設(shè),且有兩個極值點 ,求取值范圍.(其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費,并注冊成為會員,對會員逐次消費給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
消費次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收費比率 |
該公司注冊的會員中沒有消費超過次的,從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如下:
消費次數(shù) | 次 | 次 | 次 | 次 | 次 |
人數(shù) |
假設(shè)汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(2)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會員服務(wù)的平均利潤為元,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com