【題目】已知函數(shù)是定義在的偶函數(shù),且.當(dāng)時(shí),,若方程有300個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( )
A.B.C.D.
【答案】A
【解析】
首先由已知確定函數(shù)的周期是4,利用導(dǎo)數(shù)研究在上的性質(zhì),單調(diào)性、極值,結(jié)合偶函數(shù)性質(zhì)作出在上的圖象,的定義域是含有50個(gè)周期,方程有300個(gè)不同的實(shí)數(shù)根,那么在的一個(gè)周期內(nèi)有6個(gè)根,令,可知方程有兩個(gè)不等實(shí)根,且,,由二次方程根的分布知識可得解.
由知函數(shù)的周期為4,當(dāng)時(shí),,則,當(dāng)時(shí),,遞減,當(dāng)時(shí),,遞增,,又是偶函數(shù),作出在上的圖象,如圖.
函數(shù)的周期是4,定義域?yàn)?/span>,含有50個(gè)周期,
方程有300個(gè)不同的實(shí)數(shù)根,因此在一個(gè)周期內(nèi)有6個(gè)根(這里,不是方程的根).
令,方程有兩個(gè)不等實(shí)根,且,,設(shè),則,解得.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為一名曰“塹堵”的幾何體,已知 AE⊥底面BCFE , DF ∥ AE , DF = AE = 1, CE =,四邊形ABCD 是正方形.
(1)《九章算術(shù)》中將四個(gè)面都是直角三角形的四面體稱為鱉臑.判斷四面體 EABC 是否為鱉臑,若是,寫出其 每一個(gè)面的直角,并證明;若不是,請說明理由.
(2)求四面體 EABC 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)已知且,若函數(shù)沒有零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的圖像關(guān)于坐標(biāo)原點(diǎn)對稱.
(1)求的值;
(2)若函數(shù)在內(nèi)存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)設(shè),若不等式在上恒成立,求滿足條件的最小整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:①若,則;②的圖象關(guān)于點(diǎn)對稱;③函數(shù)在上單調(diào)遞增;④的圖象向右平移個(gè)單位長度后所得圖象關(guān)于軸對稱.其中所有正確結(jié)論的編號是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列的每一項(xiàng)都不等于零,且對于任意的,都有(為常數(shù)),則稱數(shù)列為“類等比數(shù)列”;已知數(shù)列滿足:,對于任意的,都有;
(1)求證:數(shù)列是“類等比數(shù)列”;
(2)若是單調(diào)遞減數(shù)列,求實(shí)數(shù)的取值范圍;
(3)若,求數(shù)列的前項(xiàng)之積取最大值時(shí)的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某產(chǎn)品的銷售額與廣告費(fèi)用之間的關(guān)系如下表:
(單位:萬元) | 0 | 1 | 2 | 3 | 4 |
(單位:萬元) | 10 | 15 | 30 | 35 |
若根據(jù)表中的數(shù)據(jù)用最小二乘法求得對的回歸直線方程為,則下列說法中錯(cuò)誤的是( )
A.產(chǎn)品的銷售額與廣告費(fèi)用成正相關(guān)
B.該回歸直線過點(diǎn)
C.當(dāng)廣告費(fèi)用為10萬元時(shí),銷售額一定為74萬元
D.的值是20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題P:函數(shù)且|f(a)|<2,命題Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=,
(1)分別求命題P、Q為真命題時(shí)的實(shí)數(shù)a的取值范圍;
(2)當(dāng)實(shí)數(shù)a取何范圍時(shí),命題P、Q中有且僅有一個(gè)為真命題;
(3)設(shè)P、Q皆為真時(shí)a的取值范圍為集合S,,若RTS,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com