【題目】已知函數(shù)圖像上一點(diǎn)處的切線方程為
(1)求的值;
(2)若方程在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍;
(3)令如果的圖像與軸交于兩點(diǎn),的中點(diǎn)為,求證:
【答案】(1);(2);(3)證明見(jiàn)解析
【解析】
(1)根據(jù)導(dǎo)數(shù)的幾何意義可知,利用切線方程求得,代入曲線可得關(guān)于的方程,與聯(lián)立可構(gòu)造方程組求得結(jié)果;(2)將問(wèn)題轉(zhuǎn)化為與的圖象在上有兩個(gè)交點(diǎn);利用導(dǎo)數(shù)得到在上的單調(diào)性和最值,從而確定有兩個(gè)交點(diǎn)時(shí)的取值范圍,進(jìn)而得到結(jié)果;(3)采用反證法,假設(shè),利用在上,中點(diǎn)坐標(biāo)公式和可化簡(jiǎn)整理得到,令,構(gòu)造函數(shù),利用導(dǎo)數(shù)可知在上單調(diào)遞增,從而得到,與等式矛盾,可知假設(shè)不成立,從而證得結(jié)論.
由題意得:定義域?yàn)?/span>;
(1)在處的切線方程為:
,解得:
(2)方程在區(qū)間內(nèi)有兩個(gè)不等實(shí)根等價(jià)于與的圖象在上有兩個(gè)交點(diǎn)
由(1)知:,
當(dāng)時(shí),;當(dāng)時(shí),
在上單調(diào)遞增,在上單調(diào)遞減
又,
,解得:
(3),則
假設(shè),則有:
…①;…②;
…③;…④
①②得:
由④得: ,即:
,即
令,由得:
設(shè),
在上單調(diào)遞增
不成立,即假設(shè)不成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高一(1)班參加校生物競(jìng)賽學(xué)生的成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:
(1)求高一(1)班參加校生物競(jìng)賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進(jìn)行某項(xiàng)研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角△ABC中,AC=,BC=1,點(diǎn)D是斜邊AB上的動(dòng)點(diǎn),將△BCD沿著CD翻折至△B'CD,使得點(diǎn)B'在平面ACD內(nèi)的射影H恰好落在線段CD上,則翻折后|AB'|的最小值是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷正確的是( )
A.兩圓錐曲線的離心率分別為,則“”是“兩圓錐曲線均為橢圓”的充要條件.
B.已知為圓內(nèi)異于圓心的一點(diǎn),則直線與該圓相交.
C.設(shè)是實(shí)數(shù),若方程表示雙曲線,則.
D.命題的否定是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年“中秋節(jié)”期間,高速公路車(chē)輛較多,交警部門(mén)通過(guò)路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車(chē)行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車(chē)速度,將行車(chē)速度()分成七段后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問(wèn)題:
(1)求的值,并說(shuō)明交警部門(mén)采用的是什么抽樣方法?
(2)求這120輛車(chē)行駛速度的眾數(shù)和中位數(shù)的估計(jì)值(精確到0.1);
(3)若該路段的車(chē)速達(dá)到或超過(guò)即視為超速行駛,試根據(jù)樣本估計(jì)該路段車(chē)輛超速行駛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)圖像上一點(diǎn)處的切線方程為
(1)求的值;
(2)若方程在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍;
(3)令如果的圖像與軸交于兩點(diǎn),的中點(diǎn)為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年年底,某城市地鐵交通建設(shè)項(xiàng)目已經(jīng)基本完成,為了解市民對(duì)該項(xiàng)目的滿(mǎn)意度,分別從不同地鐵站點(diǎn)隨機(jī)抽取若干市民對(duì)該項(xiàng)目進(jìn)行評(píng)分(滿(mǎn)分分),繪制如下頻率分布直方圖,并將分?jǐn)?shù)從低到高分為四個(gè)等級(jí):
滿(mǎn)意度評(píng)分 | 低于60分 | 60分到79分 | 80分到89分 | 不低于90分 |
滿(mǎn)意度等級(jí) | 不滿(mǎn)意 | 基本滿(mǎn)意 | 滿(mǎn)意 | 非常滿(mǎn)意 |
已知滿(mǎn)意度等級(jí)為基本滿(mǎn)意的有人.
(1)求頻率分布于直方圖中的值,及評(píng)分等級(jí)不滿(mǎn)意的人數(shù);
(2)相關(guān)部門(mén)對(duì)項(xiàng)目進(jìn)行驗(yàn)收,驗(yàn)收的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿(mǎn)意指數(shù)不低于,否則該項(xiàng)目需進(jìn)行整改,根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過(guò)驗(yàn)收,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com