16.已知函數(shù)f(x)=1-2lgx,若f(x2-1)>1,則實數(shù)x的取值范圍為(  )
A.(-$\sqrt{2}$,$\sqrt{2}$)B.(1,$\sqrt{2}$)C.(-2,-1)∪(1,2)D.(-$\sqrt{2}$,-1)∪(1,$\sqrt{2}$)

分析 由函數(shù)的性質(zhì)得到lg(x2-1)<0,再根據(jù)對數(shù)函數(shù)的性質(zhì)即可求出.

解答 解:∵函數(shù)f(x)=1-2lgx,f(x2-1)>1,
∴1-2lg(x2-1)>1,
即lg(x2-1)<0=lg1,
∴0<x2-1<1,
解得-$\sqrt{2}$<x<-1,或1<x<$\sqrt{2}$,
故不等式的解集為(-$\sqrt{2}$,-1)∪(1,$\sqrt{2}$),
故選:D.

點(diǎn)評 本題考查了對數(shù)函數(shù)的性質(zhì)以及不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a=($\frac{2}{3}$)${\;}^{\frac{1}{3}}$,b=($\frac{2}{3}$)${\;}^{\frac{1}{2}}$,c=($\frac{3}{5}$)${\;}^{\frac{1}{2}}$,則下列關(guān)系中正確的是(  )
A.a>b>cB.b>a>cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知實數(shù)a滿足$\frac{a+3}{2a}$>0,則a的取值范圍為(-∞,-3)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知{an}是各項都為正數(shù)的等比數(shù)列,其前n項和為Sn,且S2=3,S4=15.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}是等差數(shù)列,且b3=a3,b5=a5,試求數(shù)列{bn}的前n項和Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=x3+x2+ax,a∈R是常數(shù).
(Ⅰ)a=-1時,求函數(shù)f(x)在區(qū)間(0,1)上的值域;
(Ⅱ)若曲線y=f(x)有且僅有一條平行于直線y=x的切線,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若圓x2+y2+2x-4y=0關(guān)于直線3x+y+m=0對稱,則實數(shù)m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)是定義在R上的函數(shù),且滿足f(x+2)=-$\frac{1}{f(x)}$,當(dāng)2≤x<4,f(x)=x,則f(2016)=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式3x-4y+6<0表示的平面區(qū)域在直線3x-4y+6=0的( 。
A.右上方B.右下方C.左上方D.左下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知三棱錐S-ABC各頂點(diǎn)都在球O的球面上,若SA=SB=SC=1,且SA、SB、SC兩兩垂直,則球O的表面積為3π.

查看答案和解析>>

同步練習(xí)冊答案