17.下面是計算1+2+3+…+100的值的算法,
第一步,令i=1,s=0.
第二步,若i≤100成立,則執(zhí)行第三步;否則,輸出S,結(jié)束算法.
第三步,s=s+i.
第四步,i=i+1返回第二步.
請寫出該算法的程序框圖.

分析 由已知中,程序的功能我們可以利用循環(huán)結(jié)構(gòu)來解答本題,因為這是一個累加問題,故循環(huán)前累加器S=0,由于已知中的式子,可得循環(huán)變量i初值為1,步長為1,終值為100,累加量為 i,由此易寫出算法步驟,并畫出程序框.

解答 解:該算法的程序框圖如下:

點評 本題考查的知識點是程序框圖解決實際問題,其中利用循環(huán)解答累加問題時,關(guān)鍵是根據(jù)已知中的程序確定循環(huán)變量的初值、步長、終值,及累加量的通項公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.從參加乒乓球團體比賽的6名運動員中選出4名,并按排定的順序出場比賽,有多少種不同的方法?( 。
A.360種B.240種C.180種D.120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等差數(shù)列{an}中,a1=-2014,其前n項和為Sn若$\frac{{{S_{2012}}}}{2012}$-$\frac{{{S_{10}}}}{10}$=2002,則S2016的值等于( 。
A.2013B.-2014C.2016D.-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一次拋擲兩枚骰子,點數(shù)和恰好是7點概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an},{bn}滿足a1=$\frac{1}{2}$,an+bn=1,bn+1=$\frac{b_n}{1-a_n^2}$(n∈N*),則b2017=$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.《九章算術(shù)》中的“兩鼠穿墻題”是我國數(shù)學(xué)的古典名題:“今有垣厚若千尺,兩鼠對穿,大鼠日一尺,小鼠日一尺.大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”若兩只老鼠打洞長度之和為33-$\frac{1}{{2}^{4}}$尺,則兩老鼠打洞的天數(shù)是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,AB=2,AC=1,∠BAC=120°,D為BC邊上任意一點,則$\overrightarrow{AD}$•$\overrightarrow{DC}$<0的概率為$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列事件中,不可能事件的是( 。
A.{從3名男生,2名女生中任選2人,全是女生}
B.{擲兩枚硬幣,都正面向上}
C.{從一副52張撲克牌中,去除4張全是K}
D.{擲兩粒骰子,所得點數(shù)之和為1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在數(shù)列{an}中,Sn為其前n項和,滿足Sn=kan+n2-n,(k∈R,n∈N*
(1)若k=1,求數(shù)列{an}的通項公式;
(2)若數(shù)列{an-2n-1}為公比不為1的等比數(shù)列,且k>1,求Sn

查看答案和解析>>

同步練習(xí)冊答案