分析 (1)根據(jù)函數(shù)f(x)是奇函數(shù),得出f(-x)=-f(x),
再根據(jù)x>0時(shí)f(x)的解析式,求出x<0時(shí)f(x)的解析式;
(2)用定義證明f(x)是(-∞,0)上的單調(diào)增函數(shù)即可.
解答 解:(1)函數(shù)f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),
∴f(-x)=-f(x);
又x>0時(shí),f(x)=-$\frac{1}{x}$+1,
∴x<0時(shí),-x>0,
∴f(-x)=-$\frac{1}{-x}$+1=$\frac{1}{x}$+1;
∴-f(x)=$\frac{1}{x}$+1,
∴f(x)=-$\frac{1}{x}$-1;
即x<0時(shí),f(x)=-$\frac{1}{x}$-1;
(2)證明:任取x1、x2∈(-∞,0),且x1<x2,
則f(x1)-f(x2)=(-$\frac{1}{{x}_{1}}$-1)-(-$\frac{1}{{x}_{2}}$-1)=$\frac{1}{{x}_{2}}$-$\frac{1}{{x}_{1}}$=$\frac{{x}_{1}{-x}_{2}}{{{x}_{1}x}_{2}}$,
∵x1<x2<0,∴x1x2>0,x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)是(-∞,0)上的單調(diào)增函數(shù).
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性與單調(diào)性的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com