分析 (1)根據(jù)函數(shù)的解析式依次求出f(2),f($\frac{1}{2}$),f(3),f($\frac{1}{3}$)的值;
(2)由(1)歸納出f(x)與f($\frac{1}{x}$)滿足的關(guān)系時,根據(jù)解析式化簡f(x)+f($\frac{1}{x}$)即可.
解答 解:(1)由題意得,f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
則f(2)=$\frac{4}{1+4}$=$\frac{4}{5}$,f($\frac{1}{2}$)=$\frac{\frac{1}{4}}{1+\frac{1}{4}}$=$\frac{1}{5}$,
f(3)=$\frac{9}{10}$,f($\frac{1}{3}$)=$\frac{\frac{1}{9}}{1+\frac{1}{9}}$=$\frac{1}{10}$;
(2)由(1)可得f(x)+f($\frac{1}{x}$)=1,
證明如下:f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{\frac{1}{{x}^{2}}}{1+\frac{1}{{x}^{2}}}$
=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=$\frac{{x}^{2}+1}{1+{x}^{2}}$=1,
所以結(jié)論成立.
點評 本題考查函數(shù)值以及函數(shù)值的規(guī)律性,歸納推理的應用,考查化簡能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a是整數(shù) | B. | a是無理數(shù) | C. | a是有理數(shù) | D. | a不存在 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com