(本小題滿分15分)如圖,在四棱錐中,底面是正方形,側(cè)棱底面,的中點(diǎn),作于點(diǎn)

(1)證明:平面.
(2)證明:平面.
(3)求二面角的大小.
(1) 證明PA//EM即可;(2)只需證明即可;(3)  。

試題分析:(1)證明:連接交于,為正方形,中點(diǎn).
中點(diǎn),
平面,平面
//平面   
(2)中點(diǎn),

為正方形,
平面平面
 又是平面內(nèi)的兩條相交直線,
平面,又平面,所以
,是平面內(nèi)的兩條相交直線,所以,又,所以
,是平面內(nèi)的兩條相交直線,
所以平面.
(3) 平面,,則為二面角的平面角。
設(shè)正方形的棱長(zhǎng)為,則.
中,;在中,
中,=,所以.
點(diǎn)評(píng):二面角求解的一般步驟: 一、“找”:找出圖形中二面角,若不能直接找到可以通過(guò)作輔助線補(bǔ)全圖形找二面角的平面角。 二、“證”:證明所找出的角就是該二面角的平面角。三、“算”:計(jì)算出該平面角。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分) 如圖,P—ABCD是正四棱錐,是正方體,其中 

(1)求證:
(2)求平面PAD與平面所成的銳二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點(diǎn).

(1)當(dāng)時(shí),求平面與平面的夾角的余弦值;
(2)當(dāng)為何值時(shí),在棱上存在點(diǎn),使平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖所示,在棱長(zhǎng)為4的正方體ABCD—A1B1C1D1中,點(diǎn)E是棱CC1的中點(diǎn)。
 
(I)求三棱錐D1—ACE的體積;
(II)求異面直線D1E與AC所成角的余弦值;
(III)求二面角A—D1E—C的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知m、是直線,a、β是平面,給出下列命題:
(1)若l垂直于α內(nèi)兩條相交直線,則l⊥α;
(2)若l平行于α,則l平行于α內(nèi)的所有直線;
(3)若mα,lβ,且l⊥m,則α⊥β;
(4)若lβ,且l⊥α,則α⊥β;
(5)若mα,lβ,且α∥β,則l∥m.
其中正確的命題的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將一幅斜邊長(zhǎng)相等的直角三角板拼接成如圖所示的空間圖形,其中AD=BD=,∠BAC=30°,若它們的斜邊AB重合,讓三角板ABD以AB為軸轉(zhuǎn)動(dòng),則下列說(shuō)法正確的是         .

①當(dāng)平面ABD⊥平面ABC時(shí),C、D兩點(diǎn)間的距離為
②在三角板ABD轉(zhuǎn)動(dòng)過(guò)程中,總有AB⊥CD;
③在三角板ABD轉(zhuǎn)動(dòng)過(guò)程中,三棱錐D-ABC體積的最大值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知空間三條直線異面,且異面,則(  )
A.異面.B.相交.
C.平行.D.異面、相交、平行均有可能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若兩條直線都與一個(gè)平面平行,則這兩條直線的位置關(guān)系是(  )
A.平行B.相交C.異面D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是不同的直線,是不同的平面,有以下四個(gè)命題:
 ②  ③  ④
其中正確的個(gè)數(shù)(     )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案